One-to-One Correspondences

A one-to-one correspondence between two sets A and B is a pairing of objects from A and B such that every object in set A is paired up with exactly one object in B and vice versa.

The following diagram is an example of a one-to-one correspondence. It is not hard to see that we can construct many other different one-to-one correspondences between these two sets

The followings are not one-to-one correspondences because more than one object in set A are paired up with one object in set B, or some objects in set A are left out.

We know that two sets A and B have the same number of elements if there is a one-toone correspondence between them, and in this case, we say that A and B are in one-toone correspondence with each other, or that A and B are equivalent. Using this terminology, we can define the concept of a number.

The number one is the attribute common to all sets that are in one-to-one correspondence with the set $\{8\}$. (You can replace the candle by any object you like.)

The number two is the attribute common to all sets that are in one-to-one correspondence with the set $\{\hat{0}, \dot{B}\}$.

The number three is the attribute common to all sets that are in one-to-one correspondence with the set $\{\hat{8}, 8,8\}$.

We can similarly define the concept of four, or five, or any other positive whole number.

Ordering

We say that a set A has more elements than another set B if there is a one-to-one correspondence between B and a proper subset of A . In other words, there is a one-to-one correspondence between B and a portion of A such that some elements in A are left unpaired by this correspondence. The following diagram illustrates this situation.

Set B

We can finally define the ordering of numbers as follow, A number \boldsymbol{x} is greater than another number \boldsymbol{y} if there is a one-to-one correspondence from a set B with \boldsymbol{y} elements into a portion of a set A with \boldsymbol{x} elements such that there is at least one element in A left unpaired.

