B orel Isomorphism Relations of Countable Reduced A belian p-Groups.

Cary Lee
Oct 14, 1997
A bstract. This paper covers two major results. The ..rst one states that any algorithm that can determine whether two arbitrarily given countable reduced 2-groups are isomorphic is as complicated as the process of computing their UIm invariants, namely, it has to go through a trans..nite iteration of unbounded countable length. In the language of descriptive set theory, this can be stated precisely as "the set $f\left(G_{1} ; G_{2}\right): G_{1} ; G_{2}$ are isomorphic reduced 2-groups\} is relatively $\phi{ }_{1}^{1}$ to the set $f\left(G_{1} ; G_{2}\right): G_{1} ; G_{2}$ are reduced 2-groups\} but is not relatively B orel".

The second theorem denies the possibility of ..nding a Borel process to construct isomorphisms between any two given isomorphic countable reduced p-groups.

> Introduction
H. Ulm proved in 1933 that the structure of a reduced countable A belian p-group is completely determined up to isomorphism by a sequence of invariants called the Ulm invariants. The original methods he invented for the computation of these invariants and the construction of isomorphisms require a trans..nite iteration whose length, depending on the group, can be any arbitrarily large countable ordinal. One may therefore ask whether there is an alternative algorithm that requires only trans..nite recursions with bounded countable lengths. M ore precisely, if each countable p-group is coded by an element in the Cantor space, can we ..nd a B orel partial function from the Cantor space into itself that would compute the rank and Ulm invariants of any reduced countable Abelian p-group? Can we ..nd a Borel procedure that can construct an isomorphism between any two given isomorphic reduced countable A belian p-groups? In this paper, we prove that the answers to both questions are unfortunately negative.

We shall start our investigation with the search for a minimal substructure of a p-group that generates the whole group and also retains the characteristics of the group. Unless otherwise stated, all groups in this paper are assumed to be Abelian and the group operation is addition.

1. Some basic definitions and preliminary results

De..nition 1.1. A group G is a torsion group if all its elements have ..nite order.
A torsion group G is primary if, for a certain prime p, every element has order a power of p. In this case we also say that G is a p-group.

Theorem 1.2. Every torsion group is a direct sum of primary groups.
A proof of this theorem can be found in [6, p.5].
In the proof of the above theorem, we can see that G is in fact the unique direct sum of the G_{p} 's where

$$
\begin{equation*}
\mathrm{G}_{\mathrm{p}}=\mathrm{fg} 2 \mathrm{G}: \mathrm{o}(\mathrm{~g})=\mathrm{p}^{k} \text { for some } \mathrm{k}>0 \mathrm{~g} \tag{1}
\end{equation*}
$$

If G and H are isomorphic and ' : G ! H is an isomorphism, then G_{p} must be isomorphic to H_{p} for every prime p and ${ }^{1}{ }^{1} G_{p}$ will be an isomorphism between them. We therefore shall only consider p-groups and their isomorphism relations from now on.

De..nition 1.3. A group G is divisible if for every x in G and every non-zero integer n there is an element y in G with $n y=x$.

De..nition 1.4. A p-group G is divisible if and only if for every x in G, there exists an element y in G with $\mathrm{py}=\mathrm{x}$.

The following lemma is well known and the proofs for the following two theorems can be found in [6].

Theorem 1.5. A divisible group is a direct sum of groups each isomorphic to the additive group of rational numbers or to $\mathrm{Z}\left(\mathrm{p}^{1}\right)$ (for various primes p).

Theorem 1.6. A ny group G has a unique largest divisible subgroup M and $\mathrm{G}=\mathrm{M} \mathbb{O}$ where N has no (non-zero) divisible subgroups.

De..nition 1.7. A group is reduced if it has no (non-zero) divisible subgroup.

2. Trees for p-groups

It is well known that a vector space can be generated by a basis which consists of independent elements. For p-groups, we can also ..nd somesimilar minimal generating subsets which will be called generating trees.

Throughout this paper, a tree is a partially order set in which the set of predecessors of any element in ..nite and linearly ordered.

De..nition 2.1. A tree $\left(T_{G} ;<\right)$ is a full tree of a p-group G if the underlying set T_{G} is the set of elements in G and for any $\mathrm{g} ; \mathrm{h} 2 \mathrm{~T}_{\mathrm{G}}, \mathrm{g}<\mathrm{h}$ if $\mathrm{g} \in 0$ and there is a postive integer k such that $p^{k} g=h$. (T he root of ($\mathrm{T}_{\mathrm{G}} ;<$) is the identity element.)

If G is reduced, or in other words, T_{G} has no in..nite branch, then the rank of an element g in G is de..ned to be its rank in the full tree (T_{G}; $<$), namely,

$$
\begin{equation*}
\operatorname{rk}_{G}(\mathrm{~g})=\operatorname{supfr}_{\mathrm{G}}(\mathrm{x})+1: x 2 \mathrm{G} \text { and } \mathrm{x}<\mathrm{gg} \tag{2}
\end{equation*}
$$

The rank of G is the rank of the identity element in ($\left.T_{G} ;<\right)$.
Note: by abuse of notation, we identify T_{G} with ($\mathrm{T}_{\mathrm{G}} ;<$).
De..nition 2.2. If T is a tre, we de.ne G to be the formal p-group generated by the elements in T other than the root subjected to the relations $\mathrm{pb}=\mathrm{a}$; where bis an immediate successor of a in $\mathrm{T} \mathrm{n}\{$ root $\}$; and $\mathrm{pb}=0$ if bis an immediate successor of the root in T :

T is said to be well founded if it has no in..nite branch, in this case G_{T} will be reduced.

A normal form for an element in G_{T} is a linear combination of distinct elements in T with nonzero coed cients in $\mathrm{f0} 01 ; 2 ;::: \mathrm{p}_{\mathrm{i}} 1 \mathrm{~g}$.
T is a subtree of T_{G} if T is a subset of T_{G} with the induced partial ordering and is closed under predecessors. In this case we write $\mathrm{T} \cdot \mathrm{T}_{\mathrm{G}}$ by abuse of notation. Suppose $T \mu T_{G}$ and $A ́: G_{T}!G$ is the natural homomorphism. We say that T is non-redundant if Á is injective, T generates G if $A ́$ is surjective and T is a generating tree for G if Á is bijective.

T is said to be a nice generating tree if it is a generating tree and it splits at a nodeg 2 T only if g is the root or $\operatorname{rank}_{\mathrm{T}}(\mathrm{g})$ is a limit ordinal.

Note: If T is a tree and G_{T} is the p-group generated by T, then T is canonically embeddable into $\mathrm{T}_{\left(\mathrm{G}_{\mathrm{T}}\right)}$. A nd if T generates G , then G_{T} coincides with G .

Proposition 2.3. Let T be a tre. If G_{T} is the p -group generated by T , then the normal form for each element in G_{T} is unique.

Proof: Suppose that we have two dixerent normal forms

$$
\begin{equation*}
a_{1} x_{1}+\phi \Phi \Phi+a_{k} x_{k} \text { and } b_{1} y_{1}+\Varangle \phi \Phi+b y \tag{3}
\end{equation*}
$$

 distinct. A ssume further that x_{1} has maximal order.

Wede.ne a homomorphism ' : GT ! Z such that
(1) ' $\left(x_{1}\right)=\frac{1}{p^{\prime}}$
(2) ' $\left(x_{2}\right)=\Varangle \Varangle \Phi==^{\prime}\left(x_{k}\right)=^{\prime}\left(y_{1}\right)=\Varangle \Phi \Phi='(x)=0$
(3) if z is a generator such that $p^{k}=x_{1}$ for some $k>0$, then ${ }^{\prime}(z)=\frac{1}{p^{k+1}}$
(4) All other generators are sent to 0

We then have

$$
\begin{equation*}
{ }^{\prime}\left(a_{1} x_{1}+\Varangle \not \subset \Phi+a_{k} x_{k}\right)=\frac{a_{1}}{p} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
'\left(b_{1} y_{1}+\Varangle \Varangle \Phi+b y^{\prime}\right)=0 \tag{5}
\end{equation*}
$$

which means that these normal forms cannot be equal.
In the case that T is a generating tree for G, the normal form of an element g 2 G with respect to T will be de..ned similarly and is also unique by the above proposition.

The following proposition tells us more about the beauty of normal forms.
Proposition 2.4. Suppose that $T \mu T_{G}$ is non-redundant and we have

(2) $x_{1} ; \Varangle \Varangle ¢ ; x_{k} 2 T$

(4) $\mathrm{y}_{1} ; 4 \not \subset 4 ; \mathrm{y}^{-2} 2 \mathrm{~T}$
and

$$
\begin{equation*}
a_{1} x_{1}+\Phi \Phi \Phi+a_{k} x_{k}=b_{1} y_{1}+\Phi \Phi \Phi+b y \tag{6}
\end{equation*}
$$

If $a_{1} x_{1}+\Phi \phi \Phi+a_{k} x_{k}$ is in normal form (i.e. all $x_{1} ; \phi \not \subset ¢ ; x_{k}$ are distinct and non-zero), then there exist $1 / R^{0} 5 ; i=1 ; \$ \not \subset ;{ }^{\prime}$ and $0 \cdot 1 / R \cdot b$ with at least one $1 / 2$ non-zero such that

$$
\begin{equation*}
a_{1} x_{1}={ }_{i \cdot}^{x}{ }_{1 / 2 y_{i}} \tag{7}
\end{equation*}
$$

Proof: By induction on the number of steps in reducing $b_{1} y_{1}+\$ \not \subset \Phi+b y$ to its normal form. Observe that any number b, p can be written uniquely as

$$
\begin{equation*}
c_{0}+c_{1} p+\not \subset \not \subset+c_{m} p^{m} \tag{8}
\end{equation*}
$$

with $0 \cdot c_{0} ; 4 \not \subset \not \subset c_{m}<p, m, 1$ and $c_{m}>0$.
The rank function has certain nice properties as we can see in the following propositions which can be proved by trans..nite induction on rank.

Proposition 2.5. Let G be a p-group and T_{G} be its full tree. We have the following properties:
(1) for every $x 2$ G, if $x \in 0$ and $\mathrm{rk}_{\mathrm{G}}(\mathrm{x})>0$ then

$$
\begin{equation*}
\text { jfy : py = xgj = jfy } 2 \text { G : py = 0gi } \tag{9}
\end{equation*}
$$

In other words, T_{G} is uniformly branching except possibly at the root.
(2) $\mathrm{rk}_{\mathrm{G}}(\mathrm{x})=\mathrm{rk}_{\mathrm{G}}(\mathrm{i} \mathrm{x})$
(3) $\mathrm{rk}_{\mathrm{G}}(\mathrm{x}+\mathrm{y})$, $\quad \operatorname{minfrk}_{G}(x) ; r \mathrm{k}_{G}(\mathrm{y}) \mathrm{g}$ and equality holds if $r \mathrm{k}_{G}(\mathrm{x}) \in \mathrm{rk}_{\mathrm{G}}(\mathrm{y})$.
(4) If $G=H$ ©K, $x 2 H$, and y $2 K$ then $r k_{G}(x+y)=\operatorname{minfrk}_{H}(x) ; r k_{K}(y) g$.

Proposition 2.6. Assuming that $T \mu G$ is a tree and it generates G, then the following are equivalent:
(1) T is non-redundant,
(2) For every distinct non-zero $g_{1} ; \$ \not \subset ; g_{k} 2 T$ and every integers
 $\operatorname{minf}_{\mathrm{G}}^{\mathrm{G}}(\mathrm{g}): \mathrm{i} \cdot \mathrm{kg}$
(3) For every distinct non-zero $g_{1} ; \Varangle \Varangle ¢ ; g_{k} 2 T$ and any integers
 then $\mathrm{rk}_{\mathrm{G}}\left({ }^{\prime}{ }_{1} \mathrm{~g}_{\mathrm{l}}+\$ \Varangle \Phi+{ }^{\prime}{ }_{k} \mathrm{~g}_{\mathrm{k}}\right)=®$

If any one of the above is true then we have $\mathrm{rk}_{\mathrm{G}}(\mathrm{g})=\mathrm{rk}_{\mathrm{T}}(\mathrm{g})$ for all g 2 T .

Note: In the above proposition, even if we drop the hypothesis that T generates G, we still have (2), (3)) (1).

De..nition 2.7. If $X \mu G$ satis.es either condition (2) or (3) in the above proposition, then we say that X is rank independent.

Note: The above proposition implies that a generating tree of G is always rank independent. On the other hand, a maximal rank independent subtre of G_{T} may not be a generating tree for G, as we shall see in an example coming shortly afterwards, but nevertheless we have the following lemma.

Lemma 2.8. Let G be a countable reduced p-group, T_{G} be its full tree. If T is a subtree of T_{G} satisfying
(1) $8 \mathrm{a} 2 \mathrm{~T}, \mathrm{rk}_{\mathrm{T}}(\mathrm{a})=0$ implies $\mathrm{rk}_{\mathrm{G}}(\mathrm{a})=0$,
(2) T is rank independent,
(3) T generates all order p elements of G
then T is a generating tree for G.
Proof: By proposition 8, it su申 ces to show that T generates G. Let's induct on the order of elements in G .
(i) $\mathrm{o}(\mathrm{h})=\mathrm{p}$. hypothesis.
(ii) $o(h)=\mathrm{p}, \mathrm{I}>1$:

By the induction hypothesis, T generates ph and so there are $g_{1} ; 4 \not \subset \$ g_{k} 2$ T and ' 1 ; $\ddagger \not \subset 母 ;{ }^{\prime}{ }_{k} 2 Z_{p} n f 0 g$ such that

$$
\begin{equation*}
\mathrm{ph}={ }^{\prime}{ }^{\prime} \mathrm{g}_{1}+\Varangle \Varangle \Varangle+{ }^{\prime}{ }^{\prime} g_{k} \tag{10}
\end{equation*}
$$

Since T is rank independent and $\mathrm{rk}_{\mathrm{G}}(\mathrm{ph})>0, \mathrm{rk}_{\mathrm{G}}\left(\mathrm{g}_{\mathrm{i}}\right)=\mathrm{rk}_{\mathrm{G}}\left({ }^{\prime}{ }_{i} \mathrm{~g}\right)>0$ for all i . K. From the given condition (1), this implies that $\mathrm{rk}_{\mathrm{T}}(\mathrm{g})>0$ for all $\mathrm{i} \cdot \mathrm{k}$. For each $i \cdot k$, let's pick a $t_{i} 2 T$ such that $p t_{i}=g i$ and let $s={ }^{\prime}{ }_{1} t_{1}+\Varangle \not \subset \Phi+{ }^{\prime}{ }_{k} t_{k}$. T hen $s i h$ has order p and s is generated by T, hence h is also generated by T.

2
Using axiom of choice, we can prove that every vector space has a basis. B ut the situation for p-groups is quite dixerent; one can prove the existence of generating trees only in special cases, such as when the group has ..nite rank (see below) or the group is countable. The proof for the latter case is much more di¢ cult and will not be given until we have developed enough machinery in section 3.

Theorem 2.9. (Using Axiom of Choice) Every p-group of ..nite rank has a nice generating tree.
Proof: Let G be a p-group of rank $n+1$. For every i - n , let

$$
\begin{equation*}
A_{i}=f g 2 G: o(g)=p \text { and } r k(g)=i g \tag{11}
\end{equation*}
$$

and for each g 2 G with $\mathrm{o}(\mathrm{g})=\mathrm{p}$, let us choose, by the axiom of choice, a path P_{g} starting at g with maximal length.

Note that if $\mathrm{h} 2 \mathrm{P}_{\mathrm{g}}$ and $\mathrm{ph} \in 0$, then $\mathrm{rk}(\mathrm{ph})=\mathrm{rk}(\mathrm{h})+1$. We shall build T_{G} as the union of subtrees $T_{k}, k=1 ; 2 ; \phi \not \subset ; n$, where each T_{k} is constructed by the following procedure:

Using Zorn's lemma, choose a maximal subset B_{k} of A_{k} satisfying the following condition:

T_{k} is then de..ned to be the union ($\left.\begin{array}{ll} & P_{g}\end{array}\right)\left[\mathrm{f} 0 \mathrm{~g}\right.$. Clearly T_{G} is non-splitting except g2B B_{k} at the root and it is not di\$ cult to prove that T is also rank independent, hence by lemma $2.8 \mathrm{~T}_{\mathrm{G}}$ is a nice generating tree.

De..nition 2.10. [Ulm invariants] Let G be a reduced p-group, for each ordinal $\circledR<!1$ we de..ne

$$
\begin{equation*}
G ®=f g 2 G: d g)=p \text { and } r k_{G}(g), ~ ® g \tag{13}
\end{equation*}
$$

The ®th Ulm invariant of $\mathrm{G}, \mathrm{Ulm} \mathrm{m}_{\mathrm{G}}(\circledR)$, is de..ned to be the dimension of the vector space $G_{\circledR} G_{\mathbb{B}+1}$ over the ..eld Z_{p}.

De..nition 2.11. The Ulm-sequence of G is a function f_{G} whose domain is the rank

If T is a well-founded tre, then we de.ne the Ulm invariants and the Ulm-sequence of T to be those of the p -group generated by T .

The following proposition gives a direct procedure to calculate the UIm invariants of nice well-founded trees.

Proposition 2.12. If T is a nice generating tree for G , then the ®th Ulm invariant of G is the cardinality of the following set
fa2T:aG $0 ; \mathrm{rk}_{\mathrm{T}}(\mathrm{a})={ }^{\text {® }}$ and either $\mathrm{pa}=0$ or $\mathrm{rk}_{\mathrm{T}}(\mathrm{pa})$ is a limit ordinal g
Proof: If $x 2 \mathrm{G}_{\circledR}$, let $[x]$ denote the equivalence class of x in $\mathrm{G}_{\circledR} / \mathrm{G}_{\circledR+1}$.
Let

$$
\begin{gather*}
\mathrm{A}_{\circledR}=\mathrm{fa} 2 \mathrm{~T}: \mathrm{rk}(\mathrm{a})=\mathbb{®} \text { and } \mathrm{o}(\mathrm{a})=\mathrm{pg} \tag{15}\\
\mathrm{~B}_{\circledR}=\mathrm{fx} 2 \mathrm{~T}: \mathrm{rk}(\mathrm{x})=\mathbb{®} \mathrm{O}(\mathrm{x})>\mathrm{p} \\
\text { and } \mathrm{rk}(\mathrm{px}) \text { is a limit ordinal } \mathrm{g} \tag{16}
\end{gather*}
$$

For each $\times 2 B_{\circledR}$ let's choose an element $g_{x} 2 T$ such that $r k\left(g_{x}\right)>®$ and $p x=\mathrm{pg}_{\mathrm{x}}$.
We shall show that the set

$$
\begin{equation*}
D=f[a]: a 2 A_{\circledast} g\left[f\left[x i g_{x}\right]: x 2 B_{\circledast} g\right. \tag{17}
\end{equation*}
$$

forms a basis for $G_{\mathbb{®}} / G_{\circledR+1}$ over Z_{p}.
Clearly the above set is a subset of $\mathrm{G}_{\circledR} / \mathrm{G}_{\circledR+1}$ and it is linearly independent over Z_{p} because T is rank independent.

To show that every element y $2 \mathrm{G}_{\circledR},[y] 2 \mathrm{G}_{\circledR} \mathrm{G}_{\circledR+1}$ can be generated by the above set, it suф ces to consider only those y whose normal form (in terms of elements in T) does not mention elements in A_{\circledR}.

Claim If $x 2 \mathrm{~T}$ appears in the normal form of y and $\mathrm{rk}(\mathrm{x})=®_{\text {, then }} \mathrm{x} 2 \mathrm{~B}$ ®
Proof: Elementary
a

$$
\begin{equation*}
y^{0}={ }^{X} \quad{ }_{x}\left(x ; \quad g_{x}\right) \tag{18}
\end{equation*}
$$

where summation is over the set of all $x 2 B ® x$ appears in the normal form of y and ' x is the coed cient of x in the normal form of y.

O bviously y^{0} has order p and since T is rank independent, the claim implies that y i y^{0} has rank $>\circledR_{\circledR}$ Therefore y i $\mathrm{y}^{0} 2 \mathrm{G}_{\circledR+1}$ and hence $[\mathrm{y}]=\left[\mathrm{y}^{0}\right]$ is generated by the set D.

Lemma 2.13. Let G be a p-group of rank!. If G has a generating tre then G has a nice generating tree.

Proof: If G has a generating tree, then G can be written as a direct sum of subgroups each of ..nite rank. By our previous result, any p-group of ..nite rank has a nice generating tree and so G is the direct sum of such groups.

2
There is also a constuctive proof that we will not have space to include here.
Proposition 2.14. There is an uncountable p-group with rank! which has no nice generating tree and hence no generating tree at all.

Proof: For each i $2!n f 0 g$, let H_{n} be a cyclic group of order p^{n} and let G^{0} be the direct product of $\mathrm{fH}_{\mathrm{i}}: \mathrm{i}>0 \mathrm{~g}$.

O ur G would then be the torsion subgroup of G^{0}, or more explicitly

$$
\begin{equation*}
G=f h_{1} ; h_{2} ; \Varangle \phi d i h_{i} 2 H_{i} \text { and } 9 k 2!\text { such that } o\left(h_{i}\right)<p^{k} \text { for all ig } \tag{19}
\end{equation*}
$$

It is easy to check that the Ulm invariants of G are all 1 , so if G is a direct sum of cyclic groups then G would be countable.

Example 2.15. A maximal rank independent subtree that is not a generating tree.

Let G be the 2-group generated by the nice tree in Figure 1.
The tre T_{0} in the following ..gure is a maximal rank independent subtre of the full tree of G but it does not generate the element a_{00} and hence it cannot be a generating tree for G.

```
Borel Isomorphism Rel ations of Countable Reduced A bel ian p-Groups. G
```

There is also a simple example of a minimal spanning tree that is not rank inde pendent (see ..gure 2 below). In other words, we cannot expect to get a generating tree by trimming any spanning tree, and the situation more complex than that in a vector space where any minimal generating set is automatically a maximal linearly independent set.

Figure 1:
3. Exist ence of nice gener ating trees

De..nition 3.1. Let G be a countable reduced 2-group such that its underlying set is a subset of the natural numbers. We shall code G by the sequence ®s $2!2$ in the following manner:

We ..rst de..ne two sequences $\circledR_{\text {; }}$ ® 2 ! 2 by

$$
\begin{align*}
®_{1}(n) & =1 \$ \mathrm{n} 2 \mathrm{G} \tag{20}\\
\circledR_{2}(\mathrm{~m} ; \mathrm{n} ; \mathrm{li}) & =1 \$ \mathrm{~m} ; \mathrm{n} ; \mathrm{l} 2 \mathrm{G} \text { and } \tag{21}\\
\mathrm{m}+\mathrm{G} \mathrm{n} & =1 \tag{22}
\end{align*}
$$

${ }^{\circledR} G$ is then constructed by merging \circledR_{1} and \circledR_{2}. More precisely,

$$
\begin{align*}
\mathbb{R}_{G}(2 n) & =\mathbb{R}_{1}(n) \tag{23}\\
\mathbb{R}_{G}(2 n+1) & =\mathbb{R}_{2}(n) \tag{24}
\end{align*}
$$

Theorem 3.2. (Ulm's Theorem)
T wo countable reduced p-groups are isomorphic if and only if they have the same Ulm invariants.

A proof of this theorem can be found in [6, p.26-30].

De..nition 3.3. Let $\mathrm{f}:$, ! ! [@ @ be a function from a countable ordinal, to the set of countable cardinals. We say that f is an Ulm-function if
(i) for every pair of limit ordinals \circledR^{\circledR} and ${ }^{-}$such that ${ }^{-}<\circledR$. , , f takes non-zero values at in..nitely many ordinals between ®and ${ }^{-}$. (0 is also considered to be a limit ordinal here).
(ii) If, $=\circledR+1$ is a successor ordinal then $f(®) \in 0$.

Note: if f is an Ulm-function as de..ned above then
(1) for every limit ordinal $\circledR<, f{ }^{1} \circledR$ is also an Ulm-function.
(2) for every limit ordinal ${ }^{\circledR}<$, , the set of ordinals $f^{-}: f\left(^{-}\right) \in 0 g$ is unbounded in ${ }^{\circledR}$.

Proposition 3.4. $\mathrm{f}:,!\quad!\mathrm{f} @ g$ is an Ulm-function if and only if there is a countable 2-group G whose Ulm-invariant sequence is exactly f, i.e. rk(G) =, and the \circledR^{\circledR} th Ulm invariant of G is $f(®)$ for all $\mathbb{B}<$,
Proof: The su申 ciency follows directly from the de. nition of Ulm-invariants, while the necessity follows from theorem 3.7 and the fact that the 2-group generated by a nice tree T will have the same Ulm-invariant sequence as T .

Lemma 3.5. If, is a limit ordinal and f is an Ulm-function with domain, , then there is a sequence of Ulm-functions hg_{n} : n 2 !i such that
(i) $\operatorname{dom}\left(g_{n}\right)=$, for all n 2 !
(ii) $f=g_{n 2!}$

Proof:
For each ${ }^{\circ}<$, which is 0 or a limit ordinal, partition the in..nite set $\mathrm{fm} 2!$: $\mathrm{f}\left({ }^{\circ}+\mathrm{m}\right)>0 \mathrm{~g}$ into in..nitely many in..nite sets $\mathrm{S}_{\mathrm{n}}^{\left({ }^{\circ}\right)}$; and let $\mathrm{g}_{\mathrm{n}}\left({ }^{\circ}+\mathrm{m}\right)$ be $\mathrm{f}\left({ }^{\circ}+\mathrm{m}\right)$ if $\mathrm{m} 2 \mathrm{~S}_{\mathrm{n}}^{\left({ }^{\circ}\right)}, 0$ otherwise.

Lemma 3.6. If, is a limit ordinal and f is an Ulm-function with domain, then there is a sequence of ordinals h_{B} : n 2 !i co.nal in, and a sequence of Ulmfunctions $\lg _{\mathrm{n}}$: n 2 ! i such that
(i) $\operatorname{dom}\left(g_{n}\right)=\mathbb{R}_{7}$ for all $n 2$!
(ii) $f=g_{n 2!}$

Proof: If, is a limit of limits, we choose a sequence of limit ordinals $h R_{m}: m 2$! i
 sets and use a method similar to the above lemma to construct the g_{h} 's

If, $={ }^{\circ}+!$ for somelimit ordinal, ; and $h_{n}^{-}: n 2!i$ is an increasing enumeration of the set $f^{-} 2\left[{ }^{\circ} ;,\right): f\left({ }^{-}\right) \in 0 g$; we then let $\mathbb{R}_{h}={ }^{-}{ }_{n}+1$ and $g_{n}\left({ }^{-}{ }_{n}\right)=f\left({ }^{-}{ }_{n}\right): g_{h^{10}}$ is then constructed by a method similar to that in the above lemma.

Theorem 3.7. For every Ulm-function $\mathrm{f}:$, ! ! [f g, there is a well-founded nice tree T whose Ulm-sequence is f.

Proof: A gain we shall use induction on ,.
(i) , <!: Trivial.
(ii), is a limit ordinal:

X
By lemma 3.6, f can be written as a sum ${ }^{X} f_{n}$ of Ulm-functions such that each n2!
f_{n} has domain some $\mathbb{R}_{\mathrm{h}}<$, . Therefore by induction assumption, there are nice trees T_{n} 's such that the Ulm-sequence of T_{n} is exactly f_{n}. We can simply de.ne T to be the amalgamation of all the T_{n} 's at the root.
(iii), (> !) is a successor:

Let, $=\circledR+m$ where ®is a limit ordinal and $m(>0) 2$!. The restriction $g=f^{1} \circledR$ is then an Ulm-functionwwith domain a limit ordinal and hence by lemma 3.5, g can be expressed as a sum $\quad g_{n}$ where each g_{h} is an Ulm-function with domain ${ }^{\circledR}$ By induction assumption on ${ }^{n}$! , we can ..nd nice trees T_{n} 's whose UIm-sequences are g_{n} 's. Let T^{α} be a nice tree of rank m and with exactly $f(\mathbb{R}+k)$ branches of length $k+1$ for each $\mathrm{k}<\mathrm{m}$. Such a tre exists because by the de.nition of an Ulm-function, $f\left(\mathbb{R}+m_{i} 1\right)$ is nonzero. Now we can construct T by attaching the T_{n} 's to the leaves of T^{∞} (i.e. the root of T_{n} is amalgamated with one leaf of T^{∞}), such that
(i) At least one T_{n} is attached to each leaf of T^{x} and
(ii) E ach T_{n} is attached to one and only one leaf of T^{x}.

This T works.
Corollary 3.8. Every countable reduced 2-group has a nice generating tree.
Proof: Given any reduced 2-group G, let f be its Ulm-sequence. By the above theorem, we can ..nd a nice tree T whose Ulm-sequence is also f. If we let $H(T)$ be the 2-group generated by T then G and $\mathrm{H}(\mathrm{T})$ are isomorphic according to Ulm's theorem.

Suppose ' : G! H(T) is an isomorphism, then since T is a subset of $H(T)$ we can take its inverse image ' ${ }^{1}(\mathrm{~T})$ which will be a generating tree for G.

Proposition 3.9. Any two recursive rank one countable 2-groups are recursively isomorphic if and only if they have the same cardinality.

Proof: The necessity is obvious and to prove the sut ciency, let G and H be two such groups and enumerate their elements as

$$
\begin{equation*}
f g_{0} ; g_{1} ; \phi d \varnothing \text { and } f h_{0} ; h_{1} ; \text { q4め } \tag{25}
\end{equation*}
$$

We shall assume that $g_{0}=h_{0}=0$.

Our isomorphism ' will be de.ned by recursion: ' $\left(g_{0}\right)=h_{0}$; and uppose that
 monomorphism. We then consider the following two cases separately.
(1) g_{h+1} is generated by $f g_{0} ; \$ \& ¢ ; g_{n} g$:

If $g_{n+1}=g_{i}+g_{j}+g_{k}$ for instance, we de..ne' $\left(g_{n+1}\right)='(g)+{ }^{\prime}\left(g_{j}\right)+'\left(g_{k}\right)$.
(2) g_{h+1} is independent of $f g_{0} ; \phi \not \subset ¢ ; g_{n} g$:

In this case we de.ne ' $\left(g_{n+1}\right)$ to be h_{k} where k is the smallest natural number such that h_{k} is not generated by the set $f 0 ; '\left(g_{1}\right) ; '\left(g_{2}\right) ; \phi \nmid \psi ; '\left(g_{h}\right) g$:

Proposition 3.10. There are two recursive rank two countable 2-groups with re cursive generating trees such that they have the same Ulm invariants but are not recursively isomorphic.

Proof: We shall construct $\mathrm{G}_{1}, \mathrm{G}_{2}$ such that their 1st and 2 nd Ulm invariants are both @).

Let G_{1} be generated by the following recursive tree T_{1};i.e. we attach one more node to each x_{n} if n is even (see ..gure 3).

It is then easy to see that the set $\mathrm{fg} 2 \mathrm{G}_{1}: \mathrm{o}(\mathrm{g})=2$ and $\mathrm{rk}(\mathrm{g})>0 \mathrm{~g}$ is recursive.
On the other hand, let G_{2} be generated by the recursive tree T_{2} with the following sets of generators
$f t_{n}: n 2!g$ and $A=f z_{(n ; n ; m)}: f n g(n)$ terminates after exactly m steps g (where $f e g(x)$ is the universal recursive function) and with the following relations:

$$
\begin{align*}
& 8 \mathrm{n} 2!; 2 t_{n}=0 \tag{26}\\
& 8(n ; n ; m) 2 A ; 2 z_{(n ; n ; m)}=t_{n} \tag{27}
\end{align*}
$$

It is also easy to see that the tree T_{2} is recursive.
However, the set $f t_{n}: n 2!$ and $r k\left(\mathrm{t}_{\mathrm{n}}\right)>0 \mathrm{~g}$ is recursively enumerable but not recursive and therefore, G_{2} cannot be recursively isomorphic to G_{1}.

Figure 2:

Proposition 3.11. Every recursive countable 2-group of rank • ! has a $\$ 2_{2}^{0}$ nice generating tree.

Proof: If G is such a group, we shall show that G has a nice generating tree T which is recursive in an r.e. oracle, hence T is $\$_{2}^{0}$.

The oracle $\left.\circledR_{(2!} 2\right)$ is de.ned by

$$
\begin{equation*}
\text { ®(hx; mi) }=1 \$ x 2 G \& 9 y 2 G 2^{m} y=x \tag{28}
\end{equation*}
$$

The following relation and functions are easily seen to be recursive in this oracle ®
(1) $x{ }^{7} \quad \mathrm{rk}_{\mathrm{G}}(\mathrm{x})$
(2) $f(x ; y): x ; y 2 G \& r k(x), r k(y) g$
(3) $\times \overline{ }$ the ..rst longest path below x (may be empty)

Before we proceed further, we need the following de..nitions.
De..nition 3.12. Suppose g 2 G such that $\mathrm{rk}(\mathrm{g})$ is a successor ordinal, then we say that $P=h_{0} ; a_{1} ; \$ \not \subset ¢ a_{k} i$ is a path below g with maximal rank property if
(1) $2 a_{0}=g$ and $2 a_{i+1}=a_{i} 8 i<k$.
(2) $8 \mathrm{i}<\mathrm{k}, \mathrm{rk}\left(\mathrm{a}_{\mathrm{i}}\right)$ is a successor ordinal.
(3) $\mathrm{rk}\left(\mathrm{a}_{\mathrm{i}}\right)=\mathrm{rk}\left(\mathrm{a}_{\mathrm{i}+1}\right)+18 \mathrm{i}<k$
(4) $r k\left(a_{k}\right)$ is either 0 or a limit ordinal.

Note: If $\mathrm{rk}(\mathrm{x})$ is ..nite, then any longest path below x will have the maximal rank property.

De..nition 3.13. A tree $T \mu \mathrm{G}$ is said to be a nice potential generating tree for G if it satis..es the following conditions,
(1) for every $\mathrm{g} 2 \mathrm{~T}, \mathrm{~T}$ splits at g only if $\mathrm{g}=0$ or $\mathrm{rk}_{\mathrm{G}}(\mathrm{g})$ is a limit ordinal.
(2) for every $\mathrm{g} 2 \mathrm{~T}, \mathrm{r} \mathrm{k}_{\mathrm{T}}(\mathrm{g})=0$ only if $\mathrm{rk}_{\mathrm{G}}(\mathrm{g})$ is either 0 or a limit ordinal.
(3) for every g 2 T , if $2 \mathrm{~g} \in 0$ and $\mathrm{rk}_{\mathrm{G}}(2 \mathrm{~g})$ is not a limit ordinal, then $\mathrm{rk}_{\mathrm{G}}(2 \mathrm{~g})=$ $\mathrm{rk}_{\mathrm{G}}(\mathrm{g})+1$
(4) T is rank independent
(5) $8 \mathrm{a} ; \mathrm{b}\left(\right.$ distinct) 2 T , if $2 \mathrm{a}=2 \mathrm{~b} \in 0$, then $\mathrm{rk}_{\mathrm{G}}(\mathrm{a}) \mathcal{F r k}_{\mathrm{G}}(\mathrm{b})$.

Lemma 3.14. Let G be a 2-goup of rank • !, T be a nice potential generating tree for G and $\times 2 \mathrm{GnT}$ with order 2,
(a) If $f x g[f t 2 T: o(t)=2 g$ is rank independent, then so is $f x g[T$.
(b) If $f \times g[T$ is rank independent and P is a path of maximal rank below x (in particular, $\mathrm{P} * \mathrm{~T}$), then $\mathrm{fxg}[\mathrm{T}[\mathrm{P}$ is also rank independent. The proof of this lemma is straight forward and is left to the reader.

M ain Construction (for proposition 3.11)

Let $C_{0} ; \mathrm{C}_{1} ; \mathrm{C}_{2} ; 4 \not \subset \not \subset b e$ the list of all order 2 elements in G . We shall build T as the increasing union of ..nite nice potential generating trees $f T_{n}: n 2!g$ such that T_{n+1} generates G_{n}.
Stage 0: Let $\mathrm{T}_{0}=\mathrm{f} 0 \mathrm{~g}$
Stage $\mathrm{n}+1$: Suppose T_{n} has already been constructed.
Case (i) If c_{n} is generated by T_{n}, we de..ne $T_{n+1}=T_{n}$.
Case (ii) If c_{n} is not generated by T_{n} and $f c_{n} g\left[T_{n}\right.$ is still rank independent, we then de..ne

$$
\begin{equation*}
T_{n+1}=T_{n}\left[f c _ { n g } \left[\text { " the .rst longest path below } c_{n} "\right.\right. \tag{29}
\end{equation*}
$$

By the above lemma, T_{n+1} is still rank independent.
Case (iii) G_{n} is not generated by T_{n} but $f c_{n g}\left[T_{n}\right.$ is rank dependent.
By the above lemma, $f c_{n} g$ [D_{n} must also be rank dependent where

$$
\begin{equation*}
D_{n}=f t 2 T_{n}: o(t)=2 g \tag{30}
\end{equation*}
$$

Let

$$
\begin{equation*}
m=\operatorname{maxfrk}\left(c_{n}+{ }_{j} \xi_{2 j} q_{j}\right): J \mu \mathrm{fi}: \mathrm{c}_{\mathrm{i}} 2 \mathrm{~T}_{\mathrm{n}} \mathrm{~g} \mathrm{~g} \tag{31}
\end{equation*}
$$

and let J o be the ..rst subset of $f i: q_{i} 2 T_{n g}$ such that $r k\left(C_{n}+{ }_{j} \oint_{0} C_{j}\right)=m$ (note that $n Z J_{0}$). Since $\mathrm{G}_{\mathrm{n}}+\S_{j 2 \jmath_{0} \mathrm{G}}$ has order 2 and is not generated by T_{n}, there must be an ${ }^{`}>\mathrm{n}$ such that

$$
\begin{equation*}
c=C_{n}+{ }_{j 2 j_{0}} c_{j} \tag{32}
\end{equation*}
$$

M oreover, $f \subset \cdot g\left[D_{n}\right.$ is rank independent by the choice of J_{0} and the de..nition of m, hence we can de..ne

$$
\begin{equation*}
T_{n+1}=T_{n}[\text { fcg }[\text { " the ..rst longest path below c" } \tag{33}
\end{equation*}
$$

so that T_{n+1} is still rank independent and generates c_{n}.
This guarantees that T satis..es condition (3) of lemma 2.8, and condition (1) is satis..ed by the choice of a longest path below each c_{n} included in T: Finally, T is rank independent because $T={ }_{n 2} T_{n}$ and each T_{n} is. Therefore T is a generating tree and is recursive in ${ }^{\circledR}$)
4. Negat ive results

Theorem 4.1. The set $R=f G: G$ is a countable reduced 2 -groupg is strictly $\frac{1}{1}$.
Proof: Let us consider the map ' : R! Ordinals de..ned by,

$$
\begin{equation*}
'(G)=r k(G) \tag{34}
\end{equation*}
$$

Since the rank of G is the same as the rank of its full tree T_{G}, we can rewrite ' as the composition of two maps

$$
\begin{equation*}
G \nabla T_{G} \nabla r k\left(T_{G}\right) \tag{35}
\end{equation*}
$$

The ..rst one is a continuous map and the latter is a well known $\frac{1}{1}$ - rank, hence ' is also a : $\frac{1}{1}$ - rank. M oreover, ' takes ! 1 many levels because for any $\mathbb{B}<!{ }_{1}$, we can generate a 2-group of rank ®by a well-founded tree of the same rank. Therefore R is strictly $\frac{1}{1}$.

De..nition 4.2. A function from a Polish space to another Polish space is partial B orel if it is the restriction of a Borel function on the domain of f.

Corollary 4.3. There is no partial Borel function $f: 2!!2$ such that if G is a 2-group then $f(G)$ is a maximal reduced subgroup of G.

Proof: If such a f exists then a 2-group G is reduced if and only if $f(G)=G$ according to our coding of subgroups. But this implies that the set $f G: G$ is a reduced 2-group\} is B orel, contradicting the previous theorem.

Theorem 4.4. The set

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{G}_{1} ; \mathrm{G}_{2}\right): \mathrm{G}_{1} ; \mathrm{G}_{2} \text { are isomorphic reduced 2-groupsg } \tag{36}
\end{equation*}
$$

is relatively ϕ_{1}^{1} in the set

$$
\begin{equation*}
\mathrm{f}\left(\mathrm{G}_{1} ; \mathrm{G}_{2}\right): \mathrm{G}_{1} ; \mathrm{G}_{2} \text { are reduced 2-groupsg } \tag{37}
\end{equation*}
$$

Proof: Since G_{1} and G_{2} are isomorphic if and only if there is an isomorphism between them, the above set is clearly relatively $\S \frac{1}{1}$.

It remains to prove that the set

$$
\begin{equation*}
f\left(\mathrm{G}_{1} ; \mathrm{G}_{2}\right): \mathrm{G}_{1} ; \mathrm{G}_{2} \text { are non-isomorphic reduced 2-groupsg } \tag{38}
\end{equation*}
$$

is also relatively $\S \frac{1}{1}$.
By Ulm's theorem, $\mathrm{G}_{1}, \mathrm{G}_{2}$ are nonisomorphic if and only if one of the following is true:
(1) $\mathrm{rk}\left(\mathrm{G}_{1}\right)>\mathrm{rk}\left(\mathrm{G}_{2}\right)$
(2) $\mathrm{rk}\left(\mathrm{G}_{2}\right)>\mathrm{rk}\left(\mathrm{G}_{1}\right)$ or
(3) there exists ${ }^{-}<\operatorname{rk}\left(\mathrm{G}_{1}\right)=\operatorname{rk}\left(\mathrm{G}_{2}\right)$ such that $\mathrm{Ulm}_{\mathrm{G}_{1}}\left({ }^{-}\right)$GUlm $\mathrm{G}_{2}\left({ }^{-}\right)$.
(1) is equivalent to the existence of a mapping ' $: \mathrm{T}_{\mathrm{G}_{2}}$! $\mathrm{T}_{\mathrm{G}_{1}}$ such that ' preserves order in the tres, and the root of $\mathrm{T}_{\mathrm{G}_{2}}$ is not mapped to the root of $\mathrm{T}_{\mathrm{G}_{1}}$: Therefore, it is a § $\frac{1}{1}$ statement. Ditto for (2).
(3) can be rewritten as the following: there exists $x ; f_{1} ; f_{2}$ such that
x codes a countable ordinal and
$f_{1}: x!$! codes the Ulm sequence of G_{1} $f_{2}: x!$! codes the Ulm sequence of G_{2}
and $f_{1} \in f_{2}$.
Since all of the above statements are Borel, the statement is proved.
2
The following lemma provides an important tool for the proofs for most of the negative results in the rest of this chapter.

Lemma 4.5. For every Borel set $\mathrm{B} \mu$!!, there is an ordinal ${ }^{\text {® }}$ such that
for every ${ }^{-},{ }^{\circledR}$, there is a continuous $\mathrm{f}^{-}: \mathrm{B}$! the set of well founded trees such that

$$
\begin{gather*}
x 2 B!f^{-}(x) \text { has rank }<®^{\circledR} \tag{39}\\
x \not Z B!f^{-}(x) \text { has rank } \tag{40}
\end{gather*}
$$

(M ore precisely, $\mathrm{f}-(\mathrm{x})$ codes a well founded tree $\mathrm{T}-(\mathrm{x})$, but we may identify these two from time to time.)
Proof: We may assume that the underlying sets of all our tres are subsets of the natural numbers with 0 being the root so that we can code a tree T by an element ${ }^{\circ}$ of the Cantor space such that:

$$
\begin{equation*}
{ }^{\circ}(\mathrm{h} ; \mathrm{ii})=1 \tilde{A}!\mathrm{i} 2 \mathrm{~T} \tag{41}
\end{equation*}
$$

and for $\mathrm{i} \in \mathrm{j}$,

$$
\begin{equation*}
\circ_{T}(\mathrm{~h} ; \mathrm{ji})=1 \tilde{A}!\mathrm{i} ; \mathrm{j} 2 \mathrm{~T} \text { and } \mathrm{i}<_{\mathrm{T}} \mathrm{j} \tag{42}
\end{equation*}
$$

Let B be a B orel set in the Baire space N.
(i) B is clopen:

We may put $\mathbb{R}=2$ and let T_{0} be a rooted well-founded tree of rank 1 . For each

- , ® we ..x a rooted tre T- of rank ${ }^{-}$and de..ne a function $f-: N!!2$ by

$$
f-(x)=\begin{array}{lll}
T_{0} & \text { if } x 2 B \tag{43}\\
T- & \text { if } x B B
\end{array}
$$

(ii) $B={ }_{n 2!} B_{n}$:

We de. ne $\circledR^{\circledR}=\operatorname{supf} \mathbb{R}_{n}: n 2!g+1$ and for each ${ }^{-}$, $\mathbb{R}^{\text {e choose a sequence of }}$ continuous functions $\mathrm{hf}_{\mathrm{n} ;}{ }^{-}: \mathrm{n} 2$! i satisfying conditions

$$
\begin{array}{ll}
x 2 B_{n}! & r k\left(f_{n ;} ;(x)\right)<\mathbb{R}_{h} \\
x Z B_{n}! & r k\left(f_{n ;} ;(x)\right)=- \tag{45}
\end{array}
$$

De.ne

$$
\begin{equation*}
\mathrm{T}-(\mathrm{x})=\text { the amalgamation of } \mathrm{fT}_{\mathrm{n}} ;-(\mathrm{x}): \mathrm{n} 2!\mathrm{g} \text { at the roots } \tag{46}
\end{equation*}
$$

i.e. all $T_{n ;}{ }^{-}(x)$'s share the same root and otherwise disjoint where $T_{n} ;-(x)$ is the tree coded by $\mathrm{f}_{\mathrm{n} ;}$ - (x).

Clearly T-(x) satis..es conditions (39), (40) and if we code it by an element in the Cantor space ${ }^{\circ}$ (this would be our $f-(x)$) such that the underlying set of $T_{n} ;-(x)$ is a subset of

$$
\begin{equation*}
\text { f0; m; 1i + 1; m; } 2 i \text { + } 1 ; \text { фффф } \tag{47}
\end{equation*}
$$

and for $\mathrm{i} ; \mathrm{j} \in 0$

$$
\begin{array}{lll}
{ }^{\circ}(h n ; j i+1 ; h ; j i+1 i)=1 & \tilde{A}! & j 2 T_{n ;}-(x) \\
{ }^{\circ}(h m ; i i+1 ; n ; j i+1 i)=1 & \tilde{A}! & i ; j 2 T_{n ;}{ }^{-}(x) \text { and } i<j \text { in } T_{n ;-}(x) \tag{49}
\end{array}
$$

then any initial segment of ${ }^{\circ}$ will mention only a ..nite number of elements in a ..nite number of $\left[T_{n ;}-(x)\right.$'s and since each f_{n};- is continuous, so is f-.
(iii) $B=B_{n}$:

This time we let $\circledR=\operatorname{supf} \mathbb{R}_{\mathrm{h}}$: $\mathrm{n} 2!\mathrm{g}+$! and again for each chosen countable ordinal ${ }^{-}$, ®, we choose a sequence of continuous functions $f_{n ;}$: $n 2!i$ as in the previous case.

For each $\times 2$! ! we de. ne a tree T - (x) such that the m-th level of this tree consists of elements from the set

$$
\begin{equation*}
f t_{0} ; t_{1} ; \Varangle \not \subset ¢, t_{m} i: 8 i \cdot m ; t_{i} \text { is on the } m-t h \text { level of } f_{i} ;-(x) g \tag{50}
\end{equation*}
$$

and de..ne

$$
\begin{equation*}
h_{0} ; t_{1} ; \phi \not \subset ¢ ; t_{m} ; t_{m+1} i<h_{0} ; s_{1} ; \phi \not \subset ¢ ; s_{m} \mathrm{i} \tilde{A}!t_{i}<s_{i} \text { for all } i \cdot m \tag{51}
\end{equation*}
$$

Claim 1. For any $m 2!$, if $\mathrm{t}_{0} ; \mathrm{t}_{1} ; \Varangle \Varangle ¢ ; \mathrm{t}_{\mathrm{m}} \mathrm{i} 2 \mathrm{~T}(\mathrm{x})$ and ${ }^{\circ}$ is an ordinal such that
(a) for all n 2 !, rk($\left.f_{n ;}-(x)\right),{ }^{\circ}+m$
(b) for all i $\cdot m, r k\left(t_{i}\right),{ }^{\circ}$ in $f_{i} ;$ ((x)
then $r k\left(t_{0} ; t_{1} ; \Varangle \phi \phi ; t_{m} i\right),{ }^{\circ}$ in $T(x)$.

Proof: Induct on the ordinal ${ }^{\circ}$.
Claim 2. For any m 2 !, if $h_{t_{0}} ; \mathrm{t}_{1} ; \Varangle \Varangle \phi ; \mathrm{t}_{\mathrm{m}} \mathrm{i} 2 \mathrm{~T}^{-}(\mathrm{x})$ and $\mathrm{rk}\left(\mathrm{t}_{\mathrm{i}}\right) \cdot{ }^{\circ}$ in $\mathrm{T}_{\mathrm{n}} ;-(\mathrm{x})$ for some i - m, then rk(hto; $\left.\mathrm{t}_{1} ; \$ \not \subset ; \mathrm{t}_{\mathrm{m}} \mathrm{i}\right) \cdot{ }^{\circ}$ in $\mathrm{T}^{-}(\mathrm{x})$.

Proof: Suppose not, then we can project the subtree of $\mathrm{T}^{-}(\mathrm{x})$ that consists of all elements at or below $\mathrm{t}_{0} ; \mathrm{t}_{1} ; \$ \not \subset \Phi ; \mathrm{t}_{\mathrm{m}} \mathrm{i}$ onto its i -th co-ordinate and that will give rise to a subtree of $T_{i ;}-(x)$ whose rank is $>^{\circ}$. B ut this implies that $r k\left(t_{i}\right)>^{\circ}$ in T_{i};- which contradicts our assumption that $\mathrm{rk}\left(\mathrm{t}_{\mathrm{i}}\right) \cdot{ }^{\circ}$ in $\mathrm{T}_{\mathrm{i}}{ }^{-}(\mathrm{x})$.

Returning to the proof of the lemma, if $\times 2 B$ then $\times 2 B_{i}$ for some i and hence $f_{i ;} ;-(x)$ has rank $<\mathbb{R}$ and in particular every element on the i-th leve of $f_{i ;} ;(x)$ has rank < ® hence by claim 2 so is every element on the i-th level of T- (x). This implies that the rank of $T-(x)$ is at most $®+i$ which is de. nitely less than $®^{\circledR}$

If $x \neq B$ then $f_{i} ;-(x)$ has rank ${ }^{-}$for all i $2!$ and by applying claim 1 and claim 2 to the element $\mathrm{t}_{0} \mathrm{i}$, where t_{0} is the root of $\mathrm{T}_{0} \mathbf{-}^{-}(\mathrm{x})$, we see that $\mathrm{rk}\left(\mathrm{T}^{-}(\mathrm{x})\right)$ is exactly -

Finally, let $f-(x)$ be the element ${ }^{\circ} 2!2$ that codes the tree $T-(x)$ (we may assume that the elements in T - (x) are coded by the natural numbers in a recursive way) and by the same argument as in case (ii), we see that this f - is continuous. 2

Theorem 4.6. The set
$f(G ; f): G$ is a reduced 2-group and f codes the Ulm invariant sequence of $G g$
is § \mathbb{R}^{P}-hard relative to the set $D=f(G ; f)$: G is a reduced 2-group g (i.e. for every $\S \circledast{ }^{\circledR} \mathbb{C}$ set B, there is continous map whose range is contained in the set D and which reduces B to the above set) for every ordinal $®<!_{1}$, hence it is not relatively B ored.

Proof: Let $A=f(G ; f)$: G codes a reduced 2-group andf is the Ulm-sequence of Gg and B be a $\S{ }_{\circledR}^{0}$ subset of the B aire space.

By lemma 4.5 there is an ordinal, and a continuous function ' from!! to the set of countable well-founded trees such that

$$
\begin{array}{lll}
x 2 B & \quad \text { rk(} & (x))<, \\
x \not \equiv B & ! & \operatorname{rk}\left({ }^{\prime}(x)\right)=,+1 \tag{54}
\end{array}
$$

Let $\mathrm{f}:, \mathrm{f}$ @g be the constant function with domain, and H be a 2-group with rank, and whose Ulm-sequence is f. Also, for each $x 2!$!, let $K(x)$ be the 2-group generated by the well-founded tree ' (x).

Finally we de.ne $\tilde{A}:!!!!2$! $_{2}$ by

$$
\begin{equation*}
\tilde{A}(x)=(H © K(x) ; f) \tag{55}
\end{equation*}
$$

\tilde{A} is continuous because the map $x \bar{K}(x)$ is a composition of continuous maps.
It is not hard to see that \tilde{A} reduces B to A.

Corollary 4.7. The set $f\left(G_{1} ; G_{2}\right)$: $G_{1} ; G_{2}$ are isomorphic reduced 2-groupsgis § \mathbb{R}^{0} hard relative to the set $f\left(G_{1} ; G_{2}\right): G_{1} ; G_{2}$ are reduced 2-groupsg for every ordinal ® $<!{ }_{1}$, hence not relatively Borel.

Proof: Using the same notations as in the proof of the above theorem, let us de..ne \tilde{A}^{0} to be the continuous map

$$
\begin{equation*}
x ワ(H \mathbb{O}(x) ; H) \tag{56}
\end{equation*}
$$

A ccording to the constuction of $\mathrm{K}(\mathrm{x}), \mathrm{x} 2 \mathrm{~B}$ if and only if H ©K (x) and H have the same rank and same Ulm-sequence. Therefore by Ulm's thoerem, we have x 2 B if and only if $\mathrm{H} @ \mathrm{~K}(\mathrm{x})$ and H are isomorphic.

Theorem 4.4 and the above corollary imply that we have found a set in a Polish space which is relatively $\$ \frac{1}{1}$ but not relatively Borel.

Theorem 4.8. There is no B orel partial function $f:!2 £!2!!2$ such that if $\mathrm{G}_{1}, \mathrm{G}_{2}$ are isomorphic countable reduced 2-groups, then $\mathrm{f}\left(\mathrm{G}_{1} ; \mathrm{G}_{2}\right)$ is an isomorhism between G_{1} and G_{2}.

Proof: We shall see that if such a function f exists then there is a B orel way to determine whether $\left(r k_{G}(x), r k_{G}(y)\right.$ for any two arbitrary elements x, y in any reduced 2-group G, which is impossible by the next lemma.

We shall contruct a Borel partial map ' such that if G is a reduced 2-group then ' (G) is a reduced 2-group satisfying

1. $\mathrm{rk}\left({ }^{\prime}(\mathrm{G})\right)$, $\mathrm{rk}(\mathrm{G})$.
2. for every $®<r k\left({ }^{\prime}(G)\right)$, the \circledR th Ulm invariant of ${ }^{\prime}(G)$ is @.
3. the set $D=f(G ; H ; x ; y): G, H$ are reduced 2-groups, $H={ }^{\prime}(G)$, $x ; y 2 H$ and $r k_{H}(x), r k_{H}(y) g$ is relatively Borel.

Then since G © ' (G) and ' (G) are isomorphic by Ulm's theorem, we can apply f to get an isomorphism $\mathrm{f}_{(\mathrm{GO}}(\mathrm{G})$;' (G)) such that

But then we can reduce the set $A=f(G ; x ; y): G$ is a reduced 2-group, $x ; y 2 G$ and $r k_{G}(x), r k_{G}(y) g$ to D by the B orel map
and this implies that A is also relatively B orel, a contradiction!
Now it remains to construct such a Borel partial map ' .
Let G be any reduced 2-group, we ..rst rede. ne the full tree T_{G} of G to be a set of ..nite sequences of natural numbers such that

$$
\begin{align*}
\left(n_{0} ; n_{1} ; \phi \not \subset ; n_{k}\right) 2 T_{G} \quad \$ \quad & n_{0} ; n_{1} ; \phi \not \subset ¢ ; n_{k} 2 G \\
& n_{0} \text { is the identity and } \\
& 8 i<k ; 2 n_{i+1}=n_{i} \tag{59}
\end{align*}
$$

and these ..nite sequences are ordered by extension, i.e. $\psi<\forall$ if and only if u extends \forall.

Let ${ }^{\text {a }}$ be the K leene-Brouwer ordering on T_{G} based on the standard ordering of ! ; namely

$$
\begin{aligned}
& \mathrm{f}\left[\mathrm{v}_{0}<\mathrm{u}_{0}\right]_{-}\left[\mathrm{v}_{0}=\mathrm{u}_{0} \& \mathrm{v}_{1}<\mathrm{u}_{1}\right]_{-} \\
& {\left[v_{0}=u_{0} \& v_{1}=u_{1} \& v_{2}<u_{2}\right]_{-}} \\
& \text {фффф¢¢ } \\
& \text { _ }\left[v_{0}=u_{0} \& v_{1}=u_{1} \& ~ \$ \not \& \& v_{t}=u_{t} \& s>t\right] g
\end{aligned}
$$

and this linear ordering will then induce an ordering $<{ }^{\infty}$ on G in the following manner,

$$
\begin{align*}
& \text { where } u, \forall \text { are the unique sequences } \\
& \text { such that } \forall-f y g \text { and } \forall f x g \text { belong to } T_{G} \tag{60}
\end{align*}
$$

The relation $f(G ; x ; y): G$ is a reduced 2-group ; $x ; y 2 G$ and $x<^{m g}$ is then clearly relatively Borel.

If G is reduced then T_{G} is well-founded and $<^{a},<^{\infty}$ will be well orderings on T_{G} and G respectively. M oreover, the order type $\mathbb{\circledR}(\mathrm{G})$ of $<^{\mathrm{xx}}$ is no less than the rank of G because the tree ordering is embeddable into the linear order $<^{\mathrm{max}}$.

Next we shall build a tree $T_{U}(G)$ of rank $\left.\mathbb{\circledR} G\right)$ such that every Ulm invariant of the 2-group generated by $T_{U}(G)$ is @).

Let $T_{U}(G)$ be the amalgamation at the root of @ copies of the tree $T_{0}(G)$ whose underlying set is the set of all ..nite sequences of natural numbers $\mathrm{m}_{0} ; \mathrm{n}_{1} ; \not \subset \not \subset 屯, n_{k} i$ such that
$\mathrm{n}_{0} ; \mathrm{n}_{1} ; \phi 4 \ddagger ; \mathrm{n}_{\mathrm{k}} 2 \mathrm{G}$ and $\mathrm{n}_{0}{ }^{* *}>\mathrm{n}_{1}{ }^{* *}>\mathrm{n}_{2}{ }^{* *}>4 \not \subset 4^{* *}>\mathrm{n}_{\mathrm{k}}$. and these sequences are ordered by extension with the empty sequence being the root.

It is easy to prove by induction that the rank of any m_{0}; $\not \subset \Phi ; n_{k} i$ in $T_{0}(G)$ is just the order type of pred $\left(G ;<^{\mathrm{xa}} ; \mathrm{n}_{\mathrm{k}}\right)$. Hence

Every Ulm invariant of $T_{0}(G)$ is at least 1 because for every $\left.{ }^{-}<\& \in G\right)$, we can ..nd an element n 2 G such that $0 . \mathrm{t} .\left(\operatorname{pred}\left(\mathrm{G} ;<^{\mathrm{max}} ; \mathrm{n}\right)\right)=^{-}$and hence $\mathrm{rk}_{\mathrm{T}_{0}}(\mathrm{mi})={ }^{-}$. But the element mi in the group generated by $\mathrm{T}_{0}(\mathrm{G})$ has order 2 , so the ${ }^{-}$-th Ulm invariant of $T_{0}(G)$ is non-zero and that of $T_{U}(G)$ will be @.

Finally let ' be the map \G7 the 2-group generated by $\mathrm{T}_{\mathrm{U}}(\mathrm{G})$ "
Lemma 4.9. The set
$f(G ; x ; y): G$ is a countable reduced 2-group, $x ; y 2 G$ and $r k_{G}(x), r k_{G}(y) g(62)$
is not relatively Bored in the set

$$
\begin{equation*}
\mathrm{f}(\mathrm{G} ; \mathrm{x} ; \mathrm{y}) \text { : } \mathrm{G} \text { is a countable reduced 2-group, } \mathrm{x} ; \mathrm{y} 2 \mathrm{Gg} \tag{63}
\end{equation*}
$$

Proof: We shall show that every Borel subset of the Baire space can be reduced to this given set. Let $B 1 / 2!$! be any chosen Borel set. By Lemma 4.5 there is an ${ }^{\circledR 2}!_{1}$ such that for every ${ }^{-}$, ®there is a continuous map
f-: B! the set of well-founded trees
such that

$$
\begin{array}{ll}
x 2 B & f-(x) \text { has rank }<® \\
x \text { ZB } & f-(x) \text { has rank } \tag{66}
\end{array}
$$

To be speci..c, let ${ }^{-}=\circledR+1$ and without loss of generality we may assume that, for all x, the underlying set of $f-(x)$ is a subset of the even numbers greater than 0 and 2 is its root.

Let T_{0} be a ..xed well-founded tree of rank ®such that its underlying set is a subset of the odd numbers and 1 is its root.

Now we can de. ne, for each x , a tree T_{x} as illustrated in Figure 4.

Figure 3:
and de..ne G_{x} to be the reduced 2-group generated by T_{x}.

Finally if we de..ne ' to be the map

$$
\begin{equation*}
x 7\left(G_{x} ; 1 ; 2\right) \tag{67}
\end{equation*}
$$

then $\mathrm{rk}_{\mathrm{G}_{\mathrm{x}}}(1)>\mathrm{rk}_{\mathrm{G}_{\mathrm{x}}}(2)$ if and only if x 2 B , and hence ' is a continuous map (because f - is) reducing B to the given set.
Remark: The above construction in fact proves a stronger version of the lemma, namely,
" $f(G ; x ; y)$: G is a countable reduced 2-group, $x ; y 2 G, o(x)=o(y)=2$ and $r k_{G}(x), r k_{G}(y)$ gis not relatively Borel".

Theorem 4.10. There is no Borel function $f:!2 f<!2!f 0 ; 1 g$ such that if G is a countable reduced 2 -group and T is a ..nite subtree of the full tree T_{G}, then

$$
\begin{equation*}
\mathrm{f}(\mathrm{G} ; \mathrm{T})=1 \tilde{A}!\quad \mathrm{T} \text { can be extended to a generating tree of } \mathrm{G} \tag{68}
\end{equation*}
$$

Proof: We shall show that if such a Borel function exists, then the set

$$
\begin{align*}
f(G ; x ; y): & G \text { is a reduced 2-group, } x ; y 2 G ; \\
& (x)=d(y)=2 \text { and } r k_{G}(x), \quad r k_{G}(y) g \tag{69}
\end{align*}
$$

is relatively Borel, which contradicts the above remark.
Given x, y in G, note that

$$
\begin{array}{ll}
r k(x)<r k(y) \quad \$ \quad & {[r k(x)=0 ; r k(y)>0] \text { or }} \\
& {[r k(x)>0 ; r k(y)>0 \text { and }} \\
& r k(x)<r k(y) \tag{70}
\end{array}
$$

The ..rst condition on the right hand side of the above equivalence is clearly relatively B orel, so we only need to take care of the second condition.

If rk(y) >0 but rk(y) i rk(x) then for every z below y, the following ..nite tree $\mathrm{T}_{(\mathrm{x} ; \mathrm{y} ; \mathrm{z})}$ (Figure 5) cannot be extended to a generating tree for G because it is not rank independent.

It is not hard to prove that if $\mathrm{rk}(\mathrm{y})>0$, then $\mathrm{rk}(\mathrm{y})>\mathrm{rk}(\mathrm{x})$ if and only if there exists a z directly below y such that the tree $T_{(x ; y ; z)}$ can be extended to a generating tree for G.

Now the relation
rk(y) >rk(x)
can be rewritten as

$$
\begin{equation*}
9 z 2 z=y \wedge f\left(G ; T_{(x ; y ; z)}\right)=1 \tag{72}
\end{equation*}
$$

which is a redatively Borel relation.
By corollary 3.8, we know that G has at least one nice generating tree, say T. We shall then modify T into a generating tree F of G which contains $\mathrm{T}_{(\mathrm{x} ; \mathrm{y} ; \mathrm{z})}$ as a subtree.

Figure 4: $T_{(x ; y ; z)}$

Step 1: Change T to a generating tree T^{0} that contains y.
If y 2 T , let $\mathrm{T}^{0}=\mathrm{T}$; otherwise proceed as follows. Let $\mathrm{a}_{1} ; \mathrm{a}_{2} ; \Varangle \Varangle \Varangle ; \mathrm{a}_{\mathrm{k}} 2 \mathrm{Tnf0g}$ such that

$$
\begin{equation*}
y=a_{1}+\Varangle \not \subset \Phi+a_{k} \tag{73}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{rk}(y)=\operatorname{rk}\left(a_{1}\right) \cdot \operatorname{rk}\left(a_{2}\right) \cdot \Varangle \phi \not \cdot \operatorname{rk}\left(a_{k}\right) \tag{74}
\end{equation*}
$$

T^{0} will be the amal gamation of T_{1}^{0} and T_{2}^{0} at the root where

$$
\begin{equation*}
\mathrm{T}_{1}^{0}=\mathrm{T} n \mathrm{nf} 2 \mathrm{~T}: \mathrm{t} \cdot \mathrm{a}_{1} \mathrm{~g} \tag{75}
\end{equation*}
$$

and T_{2}^{0} will be a tree isomorphic to the subtree of T de..ned by

$$
\begin{equation*}
\text { ft } 2 \mathrm{~T}: \mathrm{t}=0 \text { or } \mathrm{t} \cdot \mathrm{a}_{1} \mathrm{~g} \tag{76}
\end{equation*}
$$

Let us construct T_{2}^{0} level by level.
Oth level: f0g
1st level: fyg
2nd level:
For each $b_{1} 2 T$ directly below a_{1}, we pick the ..rst b directly below a_{j} such that $r k\left(b_{1}\right), r k\left(b_{1}\right)$ for all $i=2 ; \$ \not \subset ; k$. This is possible because $r k\left(a_{i}\right), r k\left(a_{1}\right)$ for all
 y; and it is clear that $r k\left(b_{1}+\Varangle \Phi \Phi+b_{k}\right)=r k\left(b_{1}\right)$. 3rd leve:

Similar to level 2 , if $d_{1}+\$ \Varangle \Phi+d_{k}$ is on the $2 n$ level of T_{2} with d_{1} directly below a_{1} and there is $c_{1} 2 T$ directly below d_{1}, we then pick the ..rst $\mathrm{c}_{1} 2 \mathrm{~T}$ directly below d_{d} with $r k\left(q_{i}\right), r k\left(c_{1}\right)$ for all $i=2 ; \not \subset \not \subset, k$, and put $c_{1}+\not \subset \not \subset+c_{k}$ into T_{2} directly below $d_{1}+\Varangle \not \subset \Phi+d_{k}$.

All the lower levels will be constructed in a similar way.
Step 2: Change T^{0} to T
Case (i) $\times 2 \mathrm{~T}^{0}$.
Let $T^{(\infty}=T^{0} n f t 2 T^{0}: t \cdot x g$ and pick a z $2 T^{0}$ directly below y such that rk(z) , rk(x).

Figure 5:
We then construct a tre $T_{(x ; z)}$ which is isomorphic to the subtree

$$
\begin{equation*}
\mathrm{ft} 2 \mathrm{~T}^{0}: \mathrm{t} \cdot \mathrm{xg} \tag{77}
\end{equation*}
$$

using a method similar to the construction of T_{2}^{0}
O ur T would then be $T^{\oplus}\left[T_{(x ; z)}\right.$ with $x+z$ attached directly below y (as shown in Figure 6).
Case (ii) $x \neq T^{0}$.
We can use the method in step 1 to modify T^{0} to a generating tree T^{\oplus} which contains x. And in this case, because $r k(y)>r k(x)$, y would still be in T^{∞} and we are back to case (i).

Theorem 4.11. For any ..xed ${ }^{\circledR}<!1$, there is a B orel way to get a nice generating tree for any reduced 2-group G of rank less than $®^{\circledR}$.

Let us ..rst extend the de..nition of the rank of an element in any Abelian p-group G:

For any $g_{0} 2 \mathrm{G}$, if the subtreefg2 G:g• gog of thefull tre T_{G} is well-founded, then $r k_{G}\left(g_{0}\right)$ is de..ned to be the rank of this subtree, otherwise the rank of g_{0} is de..ned to be 1 :.

Lemma 4.12. For every ordinal $®<!_{1}$, there is a Borel function $\odot ®$: $2!!_{2}$ de..ned on the set of countable Abelian 2-groups such that ©@G) is a real number coding the function $f_{G}: G!®[f 1 g$ satisfying the following conditions:
(1) If G is reduced and $\mathrm{rk}(\mathrm{G}) \cdot$ • $\mathrm{Rthen}^{\mathrm{tg}} 2 \mathrm{Gnf0g}, \mathrm{f}_{\mathrm{G}}(\mathrm{g})=\mathrm{rk}_{\mathrm{G}}(\mathrm{g})$.
(2) If $\mathrm{rk}(\mathrm{G})>®$ or G is not reduced, then

$$
\mathrm{f}_{\mathrm{G}}(\mathrm{~g})={ }^{1 / 2} 1 \quad{ }^{1 / k_{G}(g)} \begin{align*}
& \text { if } r k_{G}(\mathrm{~g}) \text { is unde.ned or }, ~ \tag{78}\\
& \text { otherwise }
\end{align*}
$$

Proof: For each countable ordinal $\circledR_{\text {l }}$ let us ..x a recursive bijective map
i ®: ®[f1 g! ! (or a ..nite subset of !)
which codes the ordinal ®and the symbol 1 :
We then proceed by induction on \circledR^{\circledR}.
(1) If $®=0$, all the functions $@_{0}(G)$ are constant functions and hence $@_{0}$ is B ored.
(2) If $®=^{-}+1$ is a successor, let \mathbb{C}^{-}be the Borel function with the desired properties. We then de..ne
(3) When ®is a limit, we ..x a co..nal sequence $\circledR_{\text {; }}$ ® \mathbb{R}_{2}; $\$ 4$ of ordinals and de..ne

Lemma 4.13. For every $\mathbb{R}<!{ }_{1}$, there is a B ord function \mathfrak{a} ® whose domain is the set of countable Abelian 2-groups. If G is reduced and of rank 6 ®then ${ }^{\text {a }}$ G) is the Ulm sequence of G , otherwise it is the identity function.

M ore precisely, if G is of rank $6{ }^{\circledR}$,

$$
\begin{equation*}
\mathfrak{a} \text { ®(G) : ! ! ! } \tag{82}
\end{equation*}
$$

is a function such that $8^{-}<\circledR^{\Omega}$

$$
\begin{align*}
& \text { a } \left.\mathbb{Q} G)\left(\mathrm{i}^{-}{ }^{-}\right)\right)=0 \$ \operatorname{Ulm}_{\mathrm{G}}\left(^{-}\right)=\text {@ } \tag{83}\\
& \text { a } \left.\mathbb{Q} G)\left({ }^{(} \mathbb{R}^{-}\right)\right)=k+1 \$ \operatorname{Ulm}_{G}\left(^{-}\right)=k \tag{84}
\end{align*}
$$

where $; \circledR$: $®[\mathrm{f} 1 \mathrm{~g}$! ! (or a ..nite subset of !) is the same recursive bijection as in the previous lemma.

Proof:

Since the domain of $\underline{a}_{\circledR}$ is B orel, it su申 ces to prove that its graph is Borel.
Let \bigcirc_{\circledR} be the B orel function de..ned in the previous lemma. Then for any given G with $\mathrm{rk}(\mathrm{G}) \cdot \mathbb{R}_{,} \bigcirc_{\circledR}(\mathrm{G})$ will be the rank function of G .

For every G and $\mathrm{h}:!!!,{ }^{\mathrm{a}}(\mathrm{G})=\mathrm{h}$ if and only if the following is true: $\mathrm{G} 2 \operatorname{dom}\left({ }^{\mathrm{a}}{ }_{\circledR}\right)^{\wedge} 9 f\left[\mathrm{f}=\bigcirc_{\circledR}(\mathrm{G})^{\wedge} 8 \mathrm{~m} 8 \mathrm{k} ;\right.$

$$
\begin{array}{ll}
m 2 \text { range }(i ®)^{\wedge} \wedge(m)=k \quad & f k>0^{\wedge} '(k i 1 ; m)^{\wedge}::^{\prime}(k ; m) g_{-} \\
& \left.f k=0^{\wedge} 8 n^{\prime}(n ; m) g\right] \tag{86}
\end{array}
$$

where ' $(k ; m)$ is the senten ce:
" G has k distinct elements $g_{1} ; ~ \phi \not \subset \Varangle ; g_{k}$ such that

$$
\begin{equation*}
o\left(g_{1}\right)=\phi \not \subset \Phi=o\left(g_{k}\right)=2 \quad \& \quad f\left(g_{1}\right)=\$ \not \subset \phi=f\left(g_{k}\right)=m \tag{87}
\end{equation*}
$$

(i.e. their ranks are all equal to the ordinal coded by m)
and $g_{i} ; \not \subset \not \subset ; g_{k}$ are rank independent."
Similarly, the relation a G) $=\mathrm{h}$ can also be expressed by a 1_{1}^{1} formular, and therefore it is a Borel relation.

Now we can proceed to prove theorem 4.11.
Proof: (of theorem 4.11) The construction consists of several steps.
Let G be any given Abelian reduced 2-group with rank - μ
(1) O btain the UIm sequence of G by the function constructed in the above lemma.
(2) Build a nice tree T such that the 2 -group H generated by T has the same Ulm sequence as G.
(3) By Ulm's theorem, G and H are isomorphic and hence there is an isomorphism ' : H ! G. In addition, according to the proof of Ulm's theorem (see [6]), the isomorphism is constructed in a back and forth process in which an element of certain order and certain rank is chosen in each step. For groups of bounded ranks, this is a Borel process as a consequence of lemma 4.12.
(4) Obtain the image of T under ' which will then be a nice generating tree for G.

A cknowledgements

I would like to give credit to several people who had made signi..cant contribution to this paper. First among them is Harvey Friedman, who introduced me to this fascinating topic and shared with me his extraordinary insight in mathematical research. Secondly, I would like to thank my dissertation advisor, R andall D ougherty, for his enthusiastic and consistent support. Several ingenuous constructions in this paper are mainly his ideas.

Beside these, Tim Carlson and R onald Solomon are the two that I ned to specially thank for checking all the proofs, giving valuable suggestions as well as raising questions which led to interesting results.

Last and not the least, I must express my deep gratitude to Dina Kiseleva for retypesetting the manuscript.

R ef er ences

[1] J.P. B urgess, "A rełection phenomenon in descriptive set theory", Fundamenta M athemati cae, Vol. 104, pp. 127-136.
[2] R. Dougherty, "M onotone Reducibility over the Cantor Space", Trans. Amer. M ath. Soc., Vol. 310 (1988), pp. 433-484.
[3] R. Dougherty, S. J ackson, and A. S. K echris, "T he Structure of Hyper..nite Borel Equivalence Relations", Trans. A mer. Math. Soc. Vol. 341 (1994), pp. 193-225
[4] S. Feferman, "Impredicativity of the existence of the largest divisible subgroup of an A belian p-group,"Lecture Notes in M athematics, no. 498, Springer-Verlag, Berlin, 1975, pp. 117-130.
[5] H. Friedman and L. Stanley, "A B orel Reducibility Theory for Classes of Countable Structures", The Journal of Symbolic Logic, Vol. 54, Number 3, pp. 894-914.
[6] I. K aplansky, In..nite A belian Groups, Revised Edition. Ann Arbor: The University of M ichigan Press, 1969.
[7] A. S. K echris, "A menable equivalence relations and Turing degrees", J . Symbolic Logic, Vol. 56 (1991), pp. 182-194.
[8] K. K uratowski, Topology, Vol. 1, A cademic Press, New York, 1966.
[9] A. Louveau and B. Velickovic, "A note on B ord Equivalence Relations", Proc. A mer. M ath. Soc., Vol. 120 (1994), pp.255-259
[10] Y. N. M oschovakis, Descriptive Set Theory North-Holland, Amsterdam.

