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Abstract. This paper covers two major results. The …rst one states
that any algorithm that can determine whether two arbitrarily given countable
reduced 2-groups are isomorphic is as complicated as the process of computing
their Ulm invariants, namely, it has to go through a trans…nite iteration of un-
bounded countable length. In the language of descriptive set theory, this can be
stated precisely as “the set f(G1;G2) : G1;G2 are isomorphic reduced 2-groups}
is relatively ¢1

1 to the set f(G1;G2) : G1;G2 are reduced 2-groups} but is not
relatively Borel”.

The second theorem denies the possibility of …nding a Borel process to
construct isomorphisms between any two given isomorphic countable reduced
p-groups.

Introduction

H. Ulm proved in 1933 that the structure of a reduced countable Abelian p-group is
completely determined up to isomorphism by a sequence of invariants called the Ulm
invariants. The original methods he invented for the computation of these invariants
and the construction of isomorphisms require a trans…nite iteration whose length,
depending on the group, can be any arbitrarily large countable ordinal. One may
therefore ask whether there is an alternative algorithm that requires only trans…nite
recursions with bounded countable lengths. More precisely, if each countable p-group
is coded by an element in the Cantor space, can we …nd a Borel partial function
from the Cantor space into itself that would compute the rank and Ulm invariants
of any reduced countable Abelian p-group? Can we …nd a Borel procedure that
can construct an isomorphism between any two given isomorphic reduced countable
Abelian p-groups? In this paper, we prove that the answers to both questions are
unfortunately negative.

We shall start our investigation with the search for a minimal substructure of a
p-group that generates the whole group and also retains the characteristics of the
group. Unless otherwise stated, all groups in this paper are assumed to be Abelian
and the group operation is addition.

1
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1. Some basic definitions and preliminary results
De…nition 1.1. A group G is a torsion group if all its elements have …nite order.

A torsion group G is primary if, for a certain prime p, every element has order a
power of p. In this case we also say that G is a p-group.

Theorem 1.2. Every torsion group is a direct sum of primary groups.

A proof of this theorem can be found in [6, p.5].
In the proof of the above theorem, we can see that G is in fact the unique direct

sum of the Gp’s where

Gp = fg 2 G : o(g) = pk for some k > 0g (1)

If G and H are isomorphic and ' : G ! H is an isomorphism, then Gp must be
isomorphic to Hp for every prime p and '¹Gp will be an isomorphism between them.
We therefore shall only consider p-groups and their isomorphism relations from now
on.

De…nition 1.3. A group G is divisible if for every x in G and every non-zero integer
n there is an element y in G with ny = x.

De…nition 1.4. A p-group G is divisible if and only if for every x in G, there exists
an element y in G with py = x.

The following lemma is well known and the proofs for the following two theorems can
be found in [6].

Theorem 1.5. A divisible group is a direct sum of groups each isomorphic to the
additive group of rational numbers or to Z(p1) (for various primes p).

Theorem 1.6. Any group G has a unique largest divisible subgroup M and
G = M ©N where N has no (non-zero) divisible subgroups.

De…nition 1.7. A group is reduced if it has no (non-zero) divisible subgroup.

2. Trees for p-groups
It is well known that a vector space can be generated by a basis which consists of
independent elements. For p-groups, we can also …nd some similar minimal generating
subsets which will be called generating trees.

Throughout this paper, a tree is a partially order set in which the set of prede-
cessors of any element in …nite and linearly ordered.
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De…nition 2.1. A tree (TG; <) is a full tree of a p-group G if the underlying set TG
is the set of elements in G and for any g;h 2 TG, g < h if g 6= 0 and there is a postive
integer k such that pkg = h. (The root of (TG;<) is the identity element.)

If G is reduced, or in other words, TG has no in…nite branch, then the rank of an
element g in G is de…ned to be its rank in the full tree (TG; <), namely,

rkG(g) = supfrkG(x)+ 1 : x 2 G and x < gg (2)

The rank of G is the rank of the identity element in (TG; <).

Note: by abuse of notation, we identify TG with (TG;<).

De…nition 2.2. If T is a tree, we de…ne GT to be the formal p-group generated by
the elements in T other than the root subjected to the relations pb = a; where b is
an immediate successor of a in T n {root}; and pb = 0 if b is an immediate successor
of the root in T:

T is said to be well founded if it has no in…nite branch, in this case GT will be
reduced.

A normal form for an element in GT is a linear combination of distinct elements
in T with nonzero coe¢cients in f0;1; 2; :::; p ¡ 1g.

T is a subtree of TG if T is a subset of TG with the induced partial ordering and
is closed under predecessors. In this case we write T · TG by abuse of notation.
Suppose T µ TG and Á : GT ! G is the natural homomorphism. We say that T is
non-redundant if Á is injective, T generates G if Á is surjective and T is a generating
tree for G if Á is bijective.

T is said to be a nice generating tree if it is a generating tree and it splits at a
node g 2 T only if g is the root or rankT (g) is a limit ordinal.

Note: If T is a tree and GT is the p-group generated by T, then T is canonically
embeddable into T(GT ). And if T generates G, then GT coincides with G.

Proposition 2.3. Let T be a tree. If GT is the p-group generated by T, then the
normal form for each element in GT is unique.

Proof: Suppose that we have two di¤erent normal forms

a1x1 + ¢ ¢ ¢ +akxk and b1y1 + ¢ ¢ ¢ + b`y` (3)

Without loss of generality, we may assume that x1; ¢ ¢ ¢ ;xk; y1; ¢ ¢ ¢ ; y` 2 T are all
distinct. Assume further that x1 has maximal order.

We de…ne a homomorphism ' : GT ! Z such that

(1) '(x1) =
1

p
,

(2) '(x2) = ¢ ¢ ¢ = '(xk) = '(y1) = ¢ ¢ ¢ = '(x`) = 0
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(3) if z is a generator such that pk = x1 for some k > 0, then '(z) =
1

pk+1

(4) All other generators are sent to 0
We then have

'(a1x1+ ¢ ¢ ¢ + akxk) =
a1
p

(4)

and
'(b1y1 + ¢ ¢ ¢ + b`y`) = 0 (5)

which means that these normal forms cannot be equal. 2

In the case that T is a generating tree for G, the normal form of an element
g 2 G with respect to T will be de…ned similarly and is also unique by the above
proposition.

The following proposition tells us more about the beauty of normal forms.

Proposition 2.4. Suppose that T µ TG is non-redundant and we have

(1) a1; ¢ ¢ ¢ ; ak 2 f1; ¢ ¢ ¢ ; p¡ 1g
(2) x1; ¢ ¢ ¢ ;xk 2 T
(3) b1; ¢ ¢ ¢ ; b` 2 f1; ¢ ¢ ¢ ; p ¡ 1g
(4) y1; ¢ ¢ ¢ ; y` 2 T

and
a1x1 + ¢ ¢ ¢ +akxk = b1y1 + ¢ ¢ ¢ + b`y` (6)

If a1x1 + ¢ ¢ ¢ +akxk is in normal form (i.e. all x1; ¢ ¢ ¢ ;xk are distinct and non-zero),
then there exist ½i 0s; i = 1; ¢ ¢ ¢ ; ` and 0 · ½i · bi with at least one ½i non-zero such
that

a1x1 =
X

i·`
½iyi (7)

Proof: By induction on the number of steps in reducing b1y1 + ¢ ¢ ¢ + b`y` to its
normal form. Observe that any number b ¸ p can be written uniquely as

c0+ c1p+ ¢ ¢ ¢ + cmpm (8)

with 0 · c0; ¢ ¢ ¢ ; cm < p , m ¸ 1 and cm > 0. 2

The rank function has certain nice properties as we can see in the following
propositions which can be proved by trans…nite induction on rank.

Proposition 2.5. Let G be a p-group and TG be its full tree. We have the following
properties:
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(1) for every x 2 G, if x 6= 0 and rkG(x) > 0 then

jfy : py = xgj = jfy 2 G : py = 0gj (9)

In other words, TG is uniformly branching except possibly at the root.
(2) rkG(x) = rkG(¡x)
(3) rkG(x+ y) ¸ minfrkG(x); rkG(y)g and equality holds if rkG(x) 6= rkG(y).
(4) If G = H © K, x 2 H, and y 2 K then rkG(x+ y) = minfrkH(x); rkK(y)g.

Proposition 2.6. Assuming that T µ G is a tree and it generates G, then the
following are equivalent:

(1) T is non-redundant,

(2) For every distinct non-zero g1; ¢ ¢ ¢ ; gk 2 T and every integers
´1; ¢ ¢ ¢ ; ´k 2 f1; 2; ¢ ¢ ¢ ; p¡1g, we have rkG(´1g1+ ¢ ¢ ¢ +´kgk) =
minfrkG(gi) : i · kg

(3) For every distinct non-zero g1; ¢ ¢ ¢ ; gk 2 T and any integers
´1; ¢ ¢ ¢ ; ´k 2 f1; 2; ¢ ¢ ¢ ; p¡1g, if rkG(g1) = ¢ ¢ ¢ = rkG(gk) = ®,
then rkG(´1g1 + ¢ ¢ ¢ +´kgk) = ®

If any one of the above is true then we have rkG(g) = rkT (g) for all g 2 T.

Note: In the above proposition, even if we drop the hypothesis that T generates G,
we still have (2) , (3) ) (1).

De…nition 2.7. If X µ G satis…es either condition (2) or (3) in the above proposi-
tion, then we say that X is rank independent.

Note: The above proposition implies that a generating tree of G is always rank
independent. On the other hand, a maximal rank independent subtree of GT may not
be a generating tree for G, as we shall see in an example coming shortly afterwards,
but nevertheless we have the following lemma.

Lemma 2.8. Let G be a countable reduced p-group, TG be its full tree. If T is a
subtree of TG satisfying

(1) 8a 2 T , rkT (a) = 0 implies rkG(a) = 0,
(2) T is rank independent,
(3) T generates all order p elements of G

then T is a generating tree for G.

Proof: By proposition 8, it su¢ces to show that T generates G. Let’s induct on the
order of elements in G.
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(i) o(h) = p: hypothesis.

(ii) o(h) = pl, l > 1:
By the induction hypothesis, T generates ph and so there are g1; ¢ ¢ ¢ ; gk 2 T
and ´1; ¢ ¢ ¢ ; ´k 2 Zp n f0g such that

ph = ´1g1 + ¢ ¢ ¢ +´kgk (10)

Since T is rank independent and rkG(ph) > 0, rkG(gi) = rkG(´igi) > 0 for all
i · k. From the given condition (1), this implies that rkT (gi) > 0 for all i · k.
For each i · k, let’s pick a ti 2 T such that pti = gi and let s = ´1t1+ ¢ ¢ ¢ +´ktk.
Then s¡h has order p and s is generated by T , hence h is also generated by T.

2

Using axiom of choice, we can prove that every vector space has a basis. But the
situation for p-groups is quite di¤erent; one can prove the existence of generating
trees only in special cases, such as when the group has …nite rank (see below) or the
group is countable. The proof for the latter case is much more di¢cult and will not
be given until we have developed enough machinery in section 3.

Theorem 2.9. (Using Axiom of Choice) Every p-group of …nite rank has a nice
generating tree.
Proof: Let G be a p-group of rank n+ 1. For every i · n, let

Ai = fg 2 G : o(g) = p and rk(g) = ig (11)

and for each g 2 G with o(g) = p, let us choose, by the axiom of choice, a path Pg
starting at g with maximal length.

Note that if h 2 Pg and ph 6= 0, then rk(ph) = rk(h)+ 1.
We shall build TG as the union of subtrees Tk, k = 1; 2; ¢ ¢ ¢ ;n, where each Tk is
constructed by the following procedure:

Using Zorn’s lemma, choose a maximal subset Bk of Ak satisfying the following
condition:

8g1; ¢ ¢ ¢ ; gm 2 Bk; a1; ¢ ¢ ¢ ; am 2 Zp; rk(a1g1+ ¢ ¢ ¢ +amgm) = k (12)

Tk is then de…ned to be the union (
[

g2Bk
Pg) [ f0g. Clearly TG is non-splitting except

at the root and it is not di¢cult to prove that T is also rank independent, hence by
lemma 2.8 TG is a nice generating tree.

2
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De…nition 2.10. [Ulm invariants] Let G be a reduced p-group, for each ordinal
® < !1 we de…ne

G® = fg 2 G : o(g) = p and rkG(g) ¸ ®g (13)

The ®th Ulm invariant of G, UlmG(®), is de…ned to be the dimension of the vector
space G®=G®+1

over the …eld Zp.

De…nition 2.11. The Ulm-sequence of G is a function fG whose domain is the rank
of G and for every ® < rk(G), fG(®) =UlmG(®).
If T is a well-founded tree, then we de…ne the Ulm invariants and the Ulm-sequence
of T to be those of the p-group generated by T.

The following proposition gives a direct procedure to calculate the Ulm invariants
of nice well-founded trees.

Proposition 2.12. If T is a nice generating tree for G, then the ®th Ulm invariant
of G is the cardinality of the following set

fa 2 T : a 6= 0; rkT (a) = ® and either pa = 0 or rkT (pa) is a limit ordinal g (14)

Proof: If x 2 G®, let [x] denote the equivalence class of x in G®/G®+1.
Let

A® = fa 2 T : rk(a) = ® and o(a) = pg (15)

B® = fx 2 T : rk(x) = ®; o(x) > p

and rk(px) is a limit ordinal g (16)

For each x 2 B®, let’s choose an element gx 2 T such that rk(gx) > ® and px = pgx.
We shall show that the set

D = f[a] : a 2 A®g [ f[x ¡ gx] : x 2 B®g (17)

forms a basis for G®/G®+1 over Zp.
Clearly the above set is a subset of G®/G®+1 and it is linearly independent over

Zp because T is rank independent.
To show that every element y 2 G®, [y] 2 G®/G®+1 can be generated by the above

set, it su¢ces to consider only those y whose normal form (in terms of elements in
T) does not mention elements in A®.

Claim If x 2 T appears in the normal form of y and rk(x) = ®, then x 2 B®.

Proof: Elementary a
Now let

y0 =
X

´x(x¡ gx) (18)
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where summation is over the set of all x 2 B®; x appears in the normal form of y
and ´x is the coe¢cient of x in the normal form of y.

Obviously y0 has order p and since T is rank independent, the claim implies that
y ¡ y0 has rank > ®. Therefore y ¡ y0 2 G®+1 and hence [y] = [y0] is generated by
the set D. 2

Lemma 2.13. Let G be a p-group of rank !. If G has a generating tree then G has
a nice generating tree.

Proof: If G has a generating tree, then G can be written as a direct sum of subgroups
each of …nite rank. By our previous result, any p-group of …nite rank has a nice
generating tree and so G is the direct sum of such groups. 2

There is also a constuctive proof that we will not have space to include here.

Proposition 2.14. There is an uncountable p-group with rank ! which has no nice
generating tree and hence no generating tree at all.

Proof : For each i 2 ! n f0g, let Hn be a cyclic group of order pn and let G0 be the
direct product of fHi : i > 0g.

Our G would then be the torsion subgroup of G0, or more explicitly

G = fhh1;h2; ¢ ¢ ¢i : hi 2 Hi and 9k 2 ! such that o(hi) < pk for all ig (19)

It is easy to check that the Ulm invariants of G are all 1, so if G is a direct sum
of cyclic groups then G would be countable. 2

Example 2.15. A maximal rank independent subtree that is not a generating tree.

Let G be the 2-group generated by the nice tree in Figure 1.
The tree T0 in the following …gure is a maximal rank independent subtree of the

full tree of G but it does not generate the element a00 and hence it cannot be a
generating tree for G.
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There is also a simple example of a minimal spanning tree that is not rank inde-
pendent (see …gure 2 below). In other words, we cannot expect to get a generating
tree by trimming any spanning tree, and the situation more complex than that in a
vector space where any minimal generating set is automatically a maximal linearly
independent set.

q
¡

¡¡
@
@@q

·
··
T
TTq q

q
q
q

q
¢
¢
¢
¢
¢

@
@
@
@
@q

q

D
D
D
D
Dq
q

q
q
q

0

a

b c

d

e

f

0

a

b

a+ d

c+e

d

e

f

Figure 1:

3. Existence of nice generating trees
De…nition 3.1. Let G be a countable reduced 2-group such that its underlying set
is a subset of the natural numbers. We shall code G by the sequence ®G 2 !2 in the
following manner:

We …rst de…ne two sequences ®1;®2 2 !2 by

®1(n) = 1 $ n 2 G (20)

®2(hm;n; li) = 1 $ m; n; l 2 G and (21)

m +G n = l (22)

®G is then constructed by merging ®1 and ®2. More precisely,

®G(2n) = ®1(n) (23)

®G(2n +1) = ®2(n) (24)

Theorem 3.2. (Ulm’s Theorem)
Two countable reduced p-groups are isomorphic if and only if they have the same

Ulm invariants.

A proof of this theorem can be found in [6, p.26-30].
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De…nition 3.3. Let f : ¸ ! ! [ f@og be a function from a countable ordinal ¸ to
the set of countable cardinals. We say that f is an Ulm-function if

(i) for every pair of limit ordinals ® and ¯ such that ¯ < ® · ,̧ f takes non-zero
values at in…nitely many ordinals between ® and ¯. (0 is also considered to be a limit
ordinal here).

(ii) If ¸ = ®+1 is a successor ordinal then f(®) 6= 0.

Note: if f is an Ulm-function as de…ned above then

(1) for every limit ordinal ® < ,̧ f ¹® is also an Ulm-function.

(2) for every limit ordinal ® < ¸, the set of ordinals f¯ : f(¯) 6= 0g is unbounded
in ®.

Proposition 3.4. f : ¸ ! ! [ f@og is an Ulm-function if and only if there is a
countable 2-group G whose Ulm-invariant sequence is exactly f , i.e. rk(G) = ¸ and
the ®-th Ulm invariant of G is f(®) for all ® < ¸.

Proof: The su¢ciency follows directly from the de…nition of Ulm-invariants, while
the necessity follows from theorem 3.7 and the fact that the 2-group generated by a
nice tree T will have the same Ulm-invariant sequence as T. 2

Lemma 3.5. If ¸ is a limit ordinal and f is an Ulm-function with domain ,̧ then
there is a sequence of Ulm-functions hgn : n 2 !i such that

(i) dom(gn) = ¸, for all n 2 !

(ii) f =
X
n2!

gn

Proof:
For each ° < ¸ which is 0 or a limit ordinal, partition the in…nite set fm 2 ! :

f(° +m) > 0g into in…nitely many in…nite sets S
(°)
n ; and let gn(° + m) be f(° + m)

if m 2 S
(°)
n , 0 otherwise. 2

Lemma 3.6. If ¸ is a limit ordinal and f is an Ulm-function with domain ¸ then
there is a sequence of ordinals h®n : n 2 !i co…nal in ¸ and a sequence of Ulm-
functions hgn : n 2 !i such that

(i) dom(gn) = ®n for all n 2 !

(ii) f =
X
n2!

gn

Proof: If ¸ is a limit of limits, we choose a sequence of limit ordinals h®m : m 2 !i
co…nal in ;̧ split each set f¯ 2 [®m;®m+1) : f(¯) 6= 0g into in…nitely many in…nite
sets and use a method similar to the above lemma to construct the gn ’s

If ¸ = °+! for some limit ordinal ¸; and h¯n : n 2 !i is an increasing enumeration
of the set f¯ 2 [°;¸) : f(¯) 6= 0g; we then let ®n = ¯n +1 and gn(¯n) = f(¯n): gn ¹°
is then constructed by a method similar to that in the above lemma. 2
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Theorem 3.7. For every Ulm-function f : ¸ ! ! [ f@og, there is a well-founded
nice tree T whose Ulm-sequence is f .

Proof: Again we shall use induction on .̧
(i) ¸ < !: Trivial.
(ii) ¸ is a limit ordinal:

By lemma 3.6, f can be written as a sum
X
n2!

fn of Ulm-functions such that each

fn has domain some ®n < ¸. Therefore by induction assumption, there are nice trees
Tn’s such that the Ulm-sequence of Tn is exactly fn. We can simply de…ne T to be
the amalgamation of all the Tn’s at the root.
(iii) ¸(> !) is a successor:

Let ¸ = ®+m where ® is a limit ordinal and m(> 0) 2 !. The restriction g = f ¹®
is then an Ulm-function with domain a limit ordinal and hence by lemma 3.5, g can
be expressed as a sum

X
n2!

gn where each gn is an Ulm-function with domain ®. By

induction assumption on ¸, we can …nd nice trees Tn’s whose Ulm-sequences are gn’s.
Let T¤ be a nice tree of rank m and with exactly f(®+ k) branches of length k +1
for each k < m. Such a tree exists because by the de…nition of an Ulm-function,
f(®+m¡ 1) is nonzero. Now we can construct T by attaching the Tn’s to the leaves
of T ¤ (i.e. the root of Tn is amalgamated with one leaf of T ¤), such that

(i) At least one Tn is attached to each leaf of T ¤ and
(ii) Each Tn is attached to one and only one leaf of T¤.

This T works. 2

Corollary 3.8. Every countable reduced 2-group has a nice generating tree.

Proof: Given any reduced 2-group G, let f be its Ulm-sequence. By the above
theorem, we can …nd a nice tree T whose Ulm-sequence is also f . If we let H(T )
be the 2-group generated by T then G and H(T ) are isomorphic according to Ulm’s
theorem.

Suppose ' : G ! H(T ) is an isomorphism, then since T is a subset of H(T ) we
can take its inverse image '¡1(T) which will be a generating tree for G. 2

Proposition 3.9. Any two recursive rank one countable 2-groups are recursively
isomorphic if and only if they have the same cardinality.

Proof: The necessity is obvious and to prove the su¢ciency, let G and H be two
such groups and enumerate their elements as

fg0; g1; ¢ ¢ ¢g and fh0;h1; ¢ ¢ ¢g (25)

We shall assume that g0 = h0 = 0.
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Our isomorphism ' will be de…ned by recursion: '(g0) = h0; and uppose that
we have already de…ned ' on fg0; g1; ¢ ¢ ¢ ; gng such that ' ¹ fg0; ¢ ¢ ¢ ; gng is a …nite
monomorphism. We then consider the following two cases separately.
(1) gn+1 is generated by fg0; ¢ ¢ ¢ ; gng:

If gn+1 = gi + gj + gk for instance, we de…ne '(gn+1) = '(gi) +'(gj) + '(gk).
(2) gn+1 is independent of fg0; ¢ ¢ ¢ ; gng:

In this case we de…ne '(gn+1) to be hk where k is the smallest natural number
such that hk is not generated by the set f0; '(g1);'(g2); ¢ ¢ ¢ ; '(gn)g:

2

Proposition 3.10. There are two recursive rank two countable 2-groups with re-
cursive generating trees such that they have the same Ulm invariants but are not
recursively isomorphic.

Proof: We shall construct G1, G2 such that their 1st and 2nd Ulm invariants are
both @0.

Let G1 be generated by the following recursive tree T1;i.e. we attach one more
node to each xn if n is even (see …gure 3).

It is then easy to see that the set fg 2 G1 : o(g) = 2 and rk(g) > 0g is recursive.
On the other hand, let G2 be generated by the recursive tree T2 with the following

sets of generators
ftn : n 2 !g and A = fz(n;n;m) : fng(n) terminates after exactly m steps g

(where feg(x) is the universal recursive function ) and with the following relations:

8n 2 !; 2tn = 0 (26)

8(n; n; m) 2 A; 2z(n;n;m) = tn (27)

It is also easy to see that the tree T2 is recursive.
However, the set ftn : n 2 ! and rk(tn) > 0g is recursively enumerable but not

recursive and therefore, G2 cannot be recursively isomorphic to G1. 2
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Proposition 3.11. Every recursive countable 2-group of rank · ! has a ¢0
2 nice

generating tree.

Proof: If G is such a group, we shall show that G has a nice generating tree T
which is recursive in an r.e. oracle, hence T is ¢0

2.
The oracle ®(2 !2 ) is de…ned by

®(hx; mi) = 1 $ x 2 G & 9y 2 G 2my = x (28)

The following relation and functions are easily seen to be recursive in this oracle
®:

(1) x 7! rkG(x)
(2) f(x; y) : x; y 2 G & rk(x) ¸ rk(y)g
(3) x 7! the …rst longest path below x (may be empty)

Before we proceed further, we need the following de…nitions.

De…nition 3.12. Suppose g 2 G such that rk(g) is a successor ordinal, then we say
that P = ha0; a1; ¢ ¢ ¢ ; aki is a path below g with maximal rank property if

(1) 2a0 = g and 2ai+1 = ai 8i < k.
(2) 8i < k, rk(ai) is a successor ordinal.
(3) rk(ai) = rk(ai+1)+1 8i < k
(4) rk(ak) is either 0 or a limit ordinal.

Note: If rk(x) is …nite, then any longest path below x will have the maximal rank
property.

De…nition 3.13. A tree T µ G is said to be a nice potential generating tree for G if
it satis…es the following conditions,

(1) for every g 2 T, T splits at g only if g = 0 or rkG(g) is a limit ordinal.
(2) for every g 2 T, rkT (g) = 0 only if rkG(g) is either 0 or a limit ordinal.
(3) for every g 2 T , if 2g 6= 0 and rkG(2g) is not a limit ordinal, then rkG(2g) =

rkG(g)+1
(4) T is rank independent
(5) 8a;b (distinct) 2 T, if 2a = 2b 6= 0, then rkG(a) 6= rkG(b).

Lemma 3.14. Let G be a 2-goup of rank · !, T be a nice potential generating tree
for G and x 2 Gn T with order 2,

(a) If fxg [ ft 2 T : o(t) = 2g is rank independent, then so is fxg [ T .
(b) If fxg [ T is rank independent and P is a path of maximal rank below x (in

particular, P * T ), then fxg [ T [ P is also rank independent. The proof of this
lemma is straight forward and is left to the reader.
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Main Construction (for proposition 3.11)
Let c0; c1; c2; ¢ ¢ ¢ be the list of all order 2 elements in G. We shall build T as the

increasing union of …nite nice potential generating trees fTn : n 2 !g such that Tn+1
generates cn.
Stage 0: Let T0 = f0g
Stage n + 1: Suppose Tn has already been constructed.

Case (i) If cn is generated by Tn, we de…ne Tn+1 = Tn.

Case (ii) If cn is not generated by Tn and fcng [ Tn is still rank independent, we
then de…ne

Tn+1 = Tn [ fcng [ “ the …rst longest path below cn” (29)

By the above lemma, Tn+1 is still rank independent.

Case (iii) cn is not generated by Tn but fcng [ Tn is rank dependent.
By the above lemma, fcng [ Dn must also be rank dependent where

Dn = ft 2 Tn : o(t) = 2g (30)

Let
m = maxfrk(cn + §

j2J
cj) : J µ fi : ci 2 Tng g (31)

and let J0 be the …rst subset of fi : ci 2 Tng such that rk(cn + §
j2J0

cj) = m

(note that n =2 J0). Since cn +§j2J0 cj has order 2 and is not generated by Tn,
there must be an ` > n such that

c` = cn + §
j2J0

cj (32)

Moreover, fc`g [Dn is rank independent by the choice of J0 and the de…nition
of m, hence we can de…ne

Tn+1 = Tn [ fc`g [ “ the …rst longest path below c`” (33)

so that Tn+1 is still rank independent and generates cn.

This guarantees that T satis…es condition (3) of lemma 2.8, and condition (1)
is satis…ed by the choice of a longest path below each cn included in T: Finally,
T is rank independent because T = [

n2!
Tn and each Tn is. Therefore T is a

generating tree and is recursive in ®: 2
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4. Negative results
Theorem 4.1. The set R = fG : G is a countable reduced 2-groupg is strictly ¦11.

Proof: Let us consider the map ' : R ! Ordinals de…ned by,

'(G) = rk(G) (34)

Since the rank of G is the same as the rank of its full tree TG, we can rewrite ' as
the composition of two maps

G 7! TG 7! rk(TG) (35)

The …rst one is a continuous map and the latter is a well known ¦11- rank, hence '
is also a ¦11- rank. Moreover, ' takes !1 many levels because for any ® < !1, we can
generate a 2-group of rank ® by a well-founded tree of the same rank. Therefore R
is strictly ¦11. 2

De…nition 4.2. A function f from a Polish space to another Polish space is partial
Borel if it is the restriction of a Borel function on the domain of f .

Corollary 4.3. There is no partial Borel function f : !2 ! !2 such that if G is a
2-group then f(G) is a maximal reduced subgroup of G.

Proof: If such a f exists then a 2-group G is reduced if and only if f(G) = G
according to our coding of subgroups. But this implies that the set fG : G is a
reduced 2-group} is Borel, contradicting the previous theorem. 2

Theorem 4.4. The set

f(G1; G2) : G1; G2 are isomorphic reduced 2-groupsg (36)

is relatively ¢1
1 in the set

f(G1; G2) : G1; G2 are reduced 2-groupsg (37)

Proof: Since G1 and G2 are isomorphic if and only if there is an isomorphism
between them, the above set is clearly relatively §11.

It remains to prove that the set

f(G1; G2) : G1; G2 are non-isomorphic reduced 2-groupsg (38)

is also relatively §11.
By Ulm’s theorem, G1, G2 are nonisomorphic if and only if one of the following

is true:
(1) rk(G1) > rk(G2)
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(2) rk(G2) > rk(G1) or
(3) there exists ¯ < rk(G1) = rk(G2) such that UlmG1(¯) 6=UlmG2(¯).

(1) is equivalent to the existence of a mapping ' : TG2 ! TG1 such that ' preserves
order in the trees, and the root of TG2 is not mapped to the root of TG1: Therefore,
it is a §11 statement. Ditto for (2).
(3) can be rewritten as the following: there exists x; f1; f2 such that

x codes a countable ordinal and

f1 : x ! ! codes the Ulm sequence of G1
f2 : x ! ! codes the Ulm sequence of G2

and f1 6= f2.
Since all of the above statements are Borel, the statement is proved. 2

The following lemma provides an important tool for the proofs for most of the
negative results in the rest of this chapter.

Lemma 4.5. For every Borel set B µ !! , there is an ordinal ® such that
for every ¯ ¸ ®; there is a continuous f¯ : B ! the set of well founded trees

such that
x 2 B ! f¯(x) has rank < ® (39)

x =2 B ! f¯(x) has rank ¯ (40)

( More precisely, f¯(x) codes a well founded tree T¯(x), but we may identify these
two from time to time.)
Proof: We may assume that the underlying sets of all our trees are subsets of the
natural numbers with 0 being the root so that we can code a tree T by an element
°T of the Cantor space such that:

°T (hi; ii) = 1 Ã! i 2 T (41)

and for i 6= j,
°T (hi; ji) = 1 Ã! i; j 2 T and i <T j (42)

Let B be a Borel set in the Baire space N .
(i) B is clopen:

We may put ® = 2 and let T0 be a rooted well-founded tree of rank 1. For each
¯ ¸ ®, we …x a rooted tree T¯ of rank ¯ and de…ne a function f¯ : N ! !2 by

f¯(x) =

(
T0 if x 2 B

T¯ if x 62 B
(43)

(ii) B =
\

n2!
Bn:
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We de…ne ® = supf®n : n 2 !g+ 1 and for each ¯ ¸ ® choose a sequence of
continuous functions hfn;¯ : n 2 !i satisfying conditions

x 2 Bn ! rk(fn;¯(x)) < ®n (44)

x =2 Bn ! rk(fn;¯(x)) = ¯ (45)

De…ne

T¯(x) = the amalgamation of fTn;¯(x) : n 2 !g at the roots (46)

i.e. all Tn;¯(x)’s share the same root and otherwise disjoint where Tn;¯(x) is the tree
coded by fn;¯(x).

Clearly T¯(x) satis…es conditions (39), (40) and if we code it by an element in the
Cantor space ° (this would be our f¯(x)) such that the underlying set of Tn;¯(x) is
a subset of

f0; hn; 1i+1; hn; 2i+1; ¢ ¢ ¢g (47)

and for i; j 6= 0

°(hhn;ji+1; hn;ji+1i) = 1 Ã! j 2 Tn;¯(x) (48)

°(hhn;ii+1;hn;ji+1i) = 1 Ã! i; j 2 Tn;¯(x) and i < j in Tn;¯(x) (49)

then any initial segment of ° will mention only a …nite number of elements in a …nite
number of Tn;¯(x)’s and since each fn;¯ is continuous, so is f¯.
(iii) B =

[

n2!
Bn:

This time we let ® = supf®n : n 2 !g + ! and again for each chosen countable
ordinal ¯ ¸ ®, we choose a sequence of continuous functions hfn;¯ : n 2 !i as in the
previous case.

For each x 2 !! we de…ne a tree T¯(x) such that the m-th level of this tree
consists of elements from the set

fht0; t1; ¢ ¢ ¢ ; tmi : 8i · m; ti is on the m-th level of fi;¯(x) g (50)

and de…ne

ht0; t1; ¢ ¢ ¢ ; tm; tm+1i < hs0; s1; ¢ ¢ ¢ ; smi Ã! ti < si for all i · m (51)

Claim 1. For any m 2 !, if ht0; t1; ¢ ¢ ¢ ; tmi 2 T(x) and ° is an ordinal such that

(a) for all n 2 !, rk(fn;¯(x)) ¸ ° +m
(b) for all i · m, rk(ti) ¸ ° in fi;¯(x)

then rk(ht0; t1; ¢ ¢ ¢ ; tmi) ¸ ° in T(x).
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Proof: Induct on the ordinal °. a

Claim 2. For any m 2 !, if ht0; t1; ¢ ¢ ¢ ; tmi 2 T¯(x) and rk(ti) · ° in Tn;¯(x) for
some i · m, then rk(ht0; t1; ¢ ¢ ¢ ; tmi) · ° in T¯(x).

Proof: Suppose not, then we can project the subtree of T¯(x) that consists of all
elements at or below ht0; t1; ¢ ¢ ¢ ; tmi onto its i-th co-ordinate and that will give
rise to a subtree of Ti;¯(x) whose rank is > °. But this implies that rk(ti) > °

in Ti;¯ which contradicts our assumption that rk(ti) · ° in Ti;¯(x). a

Returning to the proof of the lemma, if x 2 B then x 2 Bi for some i and hence
fi;¯(x) has rank < ®i and in particular every element on the i-th level of fi;¯(x) has
rank < ®i hence by claim 2 so is every element on the i-th level of T¯(x). This implies
that the rank of T¯(x) is at most ®i + i which is de…nitely less than ®.

If x =2 B then fi;¯(x) has rank ¯ for all i 2 ! and by applying claim 1 and claim
2 to the element ht0i, where t0 is the root of T0;¯(x), we see that rk(T¯(x)) is exactly
¯.

Finally, let f¯(x) be the element ° 2 !2 that codes the tree T¯(x) (we may
assume that the elements in T¯(x) are coded by the natural numbers in a recursive
way) and by the same argument as in case (ii), we see that this f¯ is continuous. 2

Theorem 4.6. The set

f(G;f) : G is a reduced 2-group and f codes the Ulm invariant sequence of G g
(52)

is §®0-hard relative to the set D = f(G;f) : G is a reduced 2-group g (i.e. for every
§®0 set B, there is continous map whose range is contained in the set D and which
reduces B to the above set) for every ordinal ® < !1, hence it is not relatively Borel.

Proof: Let A = f(G; f) : G codes a reduced 2-group andf is the Ulm-sequence of Gg
and B be a §0® subset of the Baire space.

By lemma 4.5 there is an ordinal ¸ and a continuous function ' from !! to the
set of countable well-founded trees such that

x 2 B ! rk('(x)) < ¸ (53)

x =2 B ! rk('(x)) = ¸+1 (54)

Let f : ¸ ! f@0g be the constant function with domain ¸ and H be a 2-group with
rank ¸ and whose Ulm-sequence is f . Also, for each x 2 !! , let K(x) be the 2-group
generated by the well-founded tree '(x).

Finally we de…ne Ã : !! ! !2 £ !2 by

Ã(x) = (H ©K(x); f) (55)

Ã is continuous because the map x 7! K(x) is a composition of continuous maps.
It is not hard to see that Ã reduces B to A. 2
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Corollary 4.7. The set f(G1;G2) : G1; G2 are isomorphic reduced 2-groupsg is §®0-
hard relative to the set f(G1; G2) : G1;G2 are reduced 2-groupsg for every ordinal
® < !1, hence not relatively Borel.

Proof: Using the same notations as in the proof of the above theorem, let us de…ne
Ã0 to be the continuous map

x 7! (H ©K(x); H) (56)

According to the constuction of K(x), x 2 B if and only if H ©K(x) and H have
the same rank and same Ulm-sequence. Therefore by Ulm’s thoerem, we have x 2 B
if and only if H © K(x) and H are isomorphic. 2

Theorem 4.4 and the above corollary imply that we have found a set in a Polish
space which is relatively ¢1

1 but not relatively Borel.

Theorem 4.8. There is no Borel partial function f : !2 £ !2 ! !2 such that if
G1, G2 are isomorphic countable reduced 2-groups, then f(G1; G2) is an isomorhism
between G1 and G2.

Proof: We shall see that if such a function f exists then there is a Borel way
to determine whether (rkG(x) ¸ rkG(y) for any two arbitrary elements x, y in any
reduced 2-group G, which is impossible by the next lemma.

We shall contruct a Borel partial map ' such that if G is a reduced 2-group then
'(G) is a reduced 2-group satisfying

1. rk('(G)) ¸ rk(G).

2. for every ® < rk('(G)), the ®-th Ulm invariant of '(G) is @0.

3. the set D = f(G; H; x;y) : G, H are reduced 2-groups, H = '(G),
x; y 2 H and rkH(x) ¸ rkH(y)g is relatively Borel.

Then since G© '(G) and '(G) are isomorphic by Ulm’s theorem, we can apply
f to get an isomorphism f(G©'(G);'(G)) such that

rkG(x) ¸ rkG(y) $ rkG©'(G)(hx; 0i) ¸ rkG©'(G)(hy; 0i)
$ rk'(G)

³
f(G©'(G);'(G))(hx;0i)

´
¸ rk'(G)

³
f(G©'(G);'(G))(hy;0i)

´

(57)

But then we can reduce the set A = f(G;x;y) : G is a reduced 2-group, x;y 2 G and
rkG(x) ¸ rkG(y)g to D by the Borel map

(G; x; y) 7! (G;'(G); f(G©'(G);'(G))(hx;0i); f(G©'(G);'(G))(hy; 0i) ) (58)
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and this implies that A is also relatively Borel, a contradiction!
Now it remains to construct such a Borel partial map '.
Let G be any reduced 2-group, we …rst rede…ne the full tree TG of G to be a set

of …nite sequences of natural numbers such that

(n0;n1; ¢ ¢ ¢ ;nk) 2 TG $ n0; n1; ¢ ¢ ¢ ;nk 2 G

n0 is the identity and

8i < k; 2ni+1 = ni (59)

and these …nite sequences are ordered by extension, i.e. ~u < ~v if and only if ~u extends
~v .

Let <¤ be the Kleene-Brouwer ordering on TG based on the standard ordering of
!; namely

(v0; ¢ ¢ ¢ ; vs) <¤ (u0; ¢ ¢ ¢ ; ut) $ (v0; ¢ ¢ ¢ ; vs); (u0; ¢ ¢ ¢ ;ut) 2 TG and

f[v0 < u0] _ [v0 = u0 & v1 < u1] _
[v0 = u0 & v1 = u1 & v2 < u2] _
¢ ¢ ¢ ¢ ¢ ¢
_ [v0 = u0 & v1 = u1& ¢ ¢ ¢ & vt = ut & s > t]g

and this linear ordering will then induce an ordering <¤¤ on G in the following manner,

y <¤¤ x $ (v0; ¢ ¢ ¢ ; vs; y) <¤ (u0; ¢ ¢ ¢ ; ut;x)

where ~u, ~v are the unique sequences

such that ~u_fyg and ~v_fxg belong to TG (60)

The relation f(G;x;y) : G is a reduced 2-group ;x;y 2 G and x <¤¤ yg is then
clearly relatively Borel.

If G is reduced then TG is well-founded and <¤, <¤¤ will be well orderings on TG
and G respectively. Moreover, the order type ®(G) of <¤¤ is no less than the rank of
G because the tree ordering is embeddable into the linear order <¤¤.

Next we shall build a tree TU(G) of rank ®(G) such that every Ulm invariant of
the 2-group generated by TU (G) is @0.

Let TU(G) be the amalgamation at the root of @0 copies of the tree T0(G) whose
underlying set is the set of all …nite sequences of natural numbers hn0; n1; ¢ ¢ ¢ ; nki
such that

n0; n1; ¢ ¢ ¢ ;nk 2 G and n0 ** >n1 ** >n2 ** > ¢ ¢ ¢ ** >nk .
and these sequences are ordered by extension with the empty sequence being the
root.

It is easy to prove by induction that the rank of any hn0; ¢ ¢ ¢ ; nki in T0(G) is just
the order type of pred(G;<¤¤; nk). Hence

\rkT0(G)(hn0; ¢ ¢ ¢ ; nki) < rkT0(G)(hm0; ¢ ¢ ¢ ; mli) Ã! nk <¤¤ ml" (61)
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Every Ulm invariant of T0(G) is at least 1 because for every ¯ < ®(G), we can …nd an
element n 2 G such that o.t.(pred(G;<¤¤; n)) = ¯ and hence rkT0(hni) = ¯. But the
element hni in the group generated by T0(G) has order 2, so the ¯-th Ulm invariant
of T0(G) is non-zero and that of TU (G) will be @0.

Finally let ' be the map \G 7! the 2-group generated by TU(G)" 2

Lemma 4.9. The set

f(G;x;y) : G is a countable reduced 2-group, x; y 2 G and rkG(x) ¸ rkG(y) g (62)

is not relatively Borel in the set

f(G;x; y) : G is a countable reduced 2-group, x; y 2 Gg (63)

Proof: We shall show that every Borel subset of the Baire space can be reduced
to this given set. Let B ½ !! be any chosen Borel set. By Lemma 4.5 there is an
® 2 !1 such that for every ¯ ¸ ® there is a continuous map

f¯ : B ! the set of well-founded trees (64)

such that

x 2 B ! f¯(x) has rank < ® (65)

x =2 B ! f¯(x) has rank ¯ (66)

To be speci…c, let ¯ = ®+1 and without loss of generality we may assume that, for
all x, the underlying set of f¯(x) is a subset of the even numbers greater than 0 and
2 is its root.

Let T0 be a …xed well-founded tree of rank ® such that its underlying set is a
subset of the odd numbers and 1 is its root.

Now we can de…ne, for each x, a tree Tx as illustrated in Figure 4.

Q
Q
QQ

´
´

´́

r

¢
¢
¢
¢¢A
A
A
AA

r
¢
¢
¢
¢¢A
A
A
AA

r
0

21

T0 f¯(x)

Figure 3:

and de…ne Gx to be the reduced 2-group generated by Tx.
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Finally if we de…ne ' to be the map

x 7! (Gx; 1; 2) (67)

then rkGx(1) > rkGx(2) if and only if x 2 B, and hence ' is a continuous map
(because f¯ is) reducing B to the given set. 2

Remark: The above construction in fact proves a stronger version of the lemma,
namely,

“f(G; x;y) : G is a countable reduced 2-group, x; y 2 G, o(x) = o(y) = 2 and
rkG(x) ¸ rkG(y) g is not relatively Borel”.

Theorem 4.10. There is no Borel function f : !2 £ < !2 ! f0;1g such that if G
is a countable reduced 2-group and T is a …nite subtree of the full tree TG, then

f(G; T) = 1 Ã! T can be extended to a generating tree of G (68)

Proof: We shall show that if such a Borel function exists, then the set

f(G;x; y) : G is a reduced 2-group, x;y 2 G;

o(x) = o(y) = 2 and rkG(x) ¸ rkG(y)g (69)

is relatively Borel, which contradicts the above remark.
Given x, y in G, note that

rk(x) < rk(y) $ [rk(x) = 0; rk(y) > 0] or

[rk(x) > 0; rk(y) > 0 and

rk(x) < rk(y) (70)

The …rst condition on the right hand side of the above equivalence is clearly
relatively Borel, so we only need to take care of the second condition.

If rk(y) > 0 but rk(y) ¦ rk(x) then for every z below y, the following …nite tree
T(x;y;z) (Figure 5) cannot be extended to a generating tree for G because it is not
rank independent.

It is not hard to prove that if rk(y) > 0, then rk(y) > rk(x) if and only if there
exists a z directly below y such that the tree T(x;y;z) can be extended to a generating
tree for G.

Now the relation
rk(y) > rk(x) (71)

can be rewritten as
9z 2z = y ^ f(G;T(x;y;z)) = 1 (72)

which is a relatively Borel relation.
By corollary 3.8, we know that G has at least one nice generating tree, say T . We

shall then modify T into a generating tree ~T of G which contains T(x;y;z) as a subtree.
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Figure 4: T(x;y;z)

Step 1: Change T to a generating tree T 0 that contains y.
If y 2 T, let T 0 = T ; otherwise proceed as follows. Let a1; a2; ¢ ¢ ¢ ; ak 2 T n f0g

such that
y = a1 + ¢ ¢ ¢ + ak (73)

with
rk(y) = rk(a1) · rk(a2) · ¢ ¢ ¢ · rk(ak) (74)

T 0 will be the amalgamation of T 01 and T 02 at the root where

T 01 = T n ft 2 T : t · a1g (75)

and T 02 will be a tree isomorphic to the subtree of T de…ned by

ft 2 T : t = 0 or t · a1g (76)

Let us construct T 02 level by level.
0th level: f0g
1st level: fyg
2nd level:

For each b1 2 T directly below a1, we pick the …rst bi directly below ai such that
rk(bi) ¸ rk(b1) for all i = 2; ¢ ¢ ¢ ; k. This is possible because rk(ai) ¸ rk(a1) for all
i = 2; ¢ ¢ ¢ ; k. Since 2(b1+ ¢ ¢ ¢ + bk) = y we can put b1+ ¢ ¢ ¢ +bk into T 02 directly below
y; and it is clear that rk(b1 + ¢ ¢ ¢ + bk) = rk(b1).
3rd level:

Similar to level 2, if d1+ ¢ ¢ ¢ +dk is on the 2nd level of T2 with d1 directly below
a1 and there is c1 2 T directly below d1, we then pick the …rst ci 2 T directly below
di with rk(ci) ¸ rk(c1) for all i = 2; ¢ ¢ ¢ ; k, and put c1+ ¢ ¢ ¢+ck into T2 directly below
d1 + ¢ ¢ ¢ +dk.

All the lower levels will be constructed in a similar way.
Step 2: Change T 0 to ~T
Case (i) x 2 T 0:

Let T 00 = T 0 n ft 2 T 0 : t · xg and pick a z 2 T 0 directly below y such that
rk(z) ¸ rk(x).
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Figure 5:

We then construct a tree T(x;z) which is isomorphic to the subtree

ft 2 T 0 : t · xg (77)

using a method similar to the construction of T 02
Our ~T would then be T 00 [ T(x;z) with x+ z attached directly below y (as shown

in Figure 6).
Case (ii) x =2 T 0:

We can use the method in step 1 to modify T 0 to a generating tree T 00 which
contains x. And in this case, because rk(y) > rk(x), y would still be in T 00 and we
are back to case (i).

2

Theorem 4.11. For any …xed ® < !1, there is a Borel way to get a nice generating
tree for any reduced 2-group G of rank less than ®.

Let us …rst extend the de…nition of the rank of an element in any Abelian p-group
G:

For any g0 2 G, if the subtree fg 2 G : g · g0g of the full tree TG is well-founded,
then rkG(g0) is de…ned to be the rank of this subtree, otherwise the rank of g0 is
de…ned to be 1:.

Lemma 4.12. For every ordinal ® < !1, there is a Borel function ©® : !2 ! !2
de…ned on the set of countable Abelian 2-groups such that ©®(G) is a real number
coding the function fG : G ! ® [ f1g satisfying the following conditions:

(1) If G is reduced and rk(G) · ® then 8g 2 Gn f0g, fG(g) = rkG(g).
(2) If rk(G) > ® or G is not reduced, then

fG(g) =

½ 1 if rkG(g) is unde…ned or ¸ ®
rkG(g) otherwise

(78)
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Proof: For each countable ordinal ®, let us …x a recursive bijective map

¡® : ® [ f1g ! ! (or a …nite subset of !) (79)

which codes the ordinal ® and the symbol 1:
We then proceed by induction on ®.
(1) If ® = 0, all the functions ©0(G) are constant functions and hence ©0 is Borel.
(2) If ® = ¯ + 1 is a successor, let ©¯ be the Borel function with the desired

properties. We then de…ne

©®(G)(g) =

8
>><
>>:

¡® ± ¡¡1¯ (©¯(G)(g)) if ©¯(G)(g) 6= ¡¯(1)

¡®(¯) if ©¯(G)(g) = ¡¯(1); but for every
h directly below g; ©¯(G)(g) 6= ¡¯(1)

¡®(1) otherwise

(80)

(3) When ® is a limit, we …x a co…nal sequence ®1; ®2; ¢ ¢ ¢ of ordinals and de…ne

©®(G)(g) =

8
<
:

¡® ± ¡¡1®n(©®n(G)(g)) where n is the smallest such that
©®n (G)(g) 6= ¡®n (1), if such n exists

¡®(1) otherwise
(81)
2

Lemma 4.13. For every ® < !1, there is a Borel function ª® whose domain is the
set of countable Abelian 2-groups. If G is reduced and of rank 6 ® then ª®(G) is
the Ulm sequence of G, otherwise it is the identity function.

More precisely, if G is of rank 6 ®;

ª®(G) : ! ! ! (82)

is a function such that 8¯ < ®,

ª®(G)(¡®(¯)) = 0 $ UlmG(¯) = @0 (83)

ª®(G)(¡®(¯)) = k +1 $ UlmG(¯) = k (84)

ª®(G)(¡®(1)) = 0 (85)

where ¡® : ® [ f1g ! ! (or a …nite subset of !) is the same recursive bijection
as in the previous lemma.

Proof:
Since the domain of ª® is Borel, it su¢ces to prove that its graph is Borel.
Let ©® be the Borel function de…ned in the previous lemma. Then for any given

G with rk(G) · ®, ©®(G) will be the rank function of G.
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For every G and h : ! ! !, ª®(G) = h if and only if the following is true:

G 2 dom(ª®) ^ 9f [f = ©®(G) ^ 8m 8k;

m 2 range(¡®) ^ h(m) = k ! fk > 0 ^ '(k ¡ 1; m) ^ :'(k; m)g _
fk = 0 ^ 8n '(n;m)g] (86)

where '(k; m) is the sentence:
“G has k distinct elements g1; ¢ ¢ ¢ ; gk such that

o(g1) = ¢ ¢ ¢ = o(gk) = 2 & f(g1) = ¢ ¢ ¢ = f(gk) = m (87)

(i.e. their ranks are all equal to the ordinal coded by m)

and g1; ¢ ¢ ¢ ; gk are rank independent.”
Similarly, the relation ª®(G) = h can also be expressed by a ¦11 formular, and

therefore it is a Borel relation.
2

Now we can proceed to prove theorem 4.11.
Proof: (of theorem 4.11) The construction consists of several steps.

Let G be any given Abelian reduced 2-group with rank · µ.
(1) Obtain the Ulm sequence of G by the function constructed in the above lemma.
(2) Build a nice tree T such that the 2-group H generated by T has the same

Ulm sequence as G.
(3) By Ulm’s theorem, G and H are isomorphic and hence there is an isomorphism

' : H ! G. In addition, according to the proof of Ulm’s theorem (see [6]), the
isomorphism is constructed in a back and forth process in which an element of certain
order and certain rank is chosen in each step. For groups of bounded ranks, this is a
Borel process as a consequence of lemma 4.12.

(4) Obtain the image of T under ' which will then be a nice generating tree for
G. 2
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