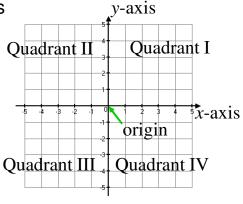
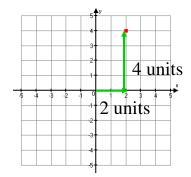
Section 6.7


Graphing Linear Equations

Chapter 6 Section 7 - Slide 1

Rectangular Coordinate System

- The horizontal line is called the x-axis.
- The vertical line is called the y-axis.
- The point of intersection is the origin.



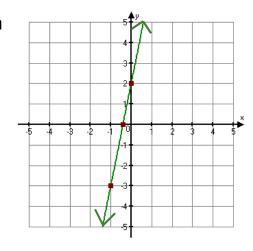
Copyright © 2009 Pearson Education, Inc.

Plotting Points

- Each point in the xy-plane corresponds to a unique ordered pair (a, b).
- Plot the point (2, 4). Starting from the origin:

Move 2 units right Move 4 units up

Copyright © 2009 Pearson Education, Inc.


Chapter 6 Section 7 - Slide 3

Graphing Linear Equations

Graph the equation

$$y = 5x + 2$$

Χ	У
0	2
-2/5	0
-1	-3

Copyright © 2009 Pearson Education, Inc.

To Graph Equations by Plotting Points

- Solve the equation for *y*.
- Select at least three values for x and find their corresponding values of y.
- Plot the points.
- The points should be in a straight line. Draw a line through the set of points and place arrow tips at both ends of the line.

Copyright @ 2009 Pearson Education, Inc.

Chapter 6 Section 7 - Slide 5

Graphing Using Intercepts

■ The *x*-intercept is found by letting *y* = 0 and solving for *x*.

$$y = -3x + 6$$

$$0 = -3x + 6$$

$$-6 = -3x$$

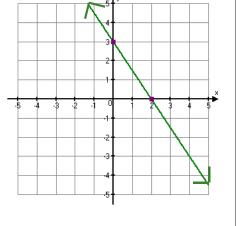
$$2 = x$$

■ The *y*-intercept is found by letting *x* = 0 and solving for *y*.

$$y = -3x + 6$$

$$y = -3(0) + 6$$

Copyright © 2009 Pearson Education, Inc


Example: Graph 3x + 2y = 6

• Find the *x*-intercept.

$$3x + 2y = 6$$
$$3x + 2(0) = 6$$
$$3x = 6$$
$$x = 2$$

• Find the *y*-intercept.

$$3x + 2y = 6$$
$$3(0) + 2y = 6$$
$$2y = 6$$
$$y = 3$$

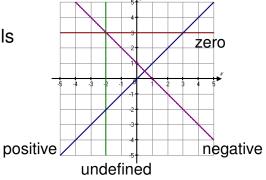
PEARSON Addison Wesley

Copyright © 2009 Pearson Education, Inc.

Chapter 6 Section 7 - Slide 7

Slope

 The ratio of the vertical change to the horizontal change for any two points on the line.


Slope =
$$\frac{\text{vertical change}}{\text{horizontal change}}$$

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Copyright © 2009 Pearson Education, Inc.

Types of Slope

- Positive slope rises from left to right.
- Negative slope falls from left to right.
- The slope of a vertical line is undefined.
- The slope of a horizontal line is zero.

PEARSON
Addison
Wesley

Copyright © 2009 Pearson Education, Inc.

Chapter 6 Section 7 - Slide 9

Example: Finding Slope

■ Find the slope of the line through the points (5, -3) and (-2, -3).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{-3 - (-3)}{-2 - 5}$$

$$m = \frac{-3 + 3}{-7}$$

$$m = \frac{0}{-7} = 0$$

Copyright © 2009 Pearson Education, Inc

The Slope-Intercept Form of a Line

Slope-Intercept Form of the Equation of the Line
y = mx + b where m is the slope of the line and
(0, b) is the y-intercept of the line.

Chapter 6 Section 7 - Slide 11

Graphing Equations by Using the Slope and *y*-Intercept

- Solve the equation for y to place the equation in slope-intercept form.
- Determine the slope and *y*-intercept from the equation.
- Plot the *y*-intercept.
- Obtain a second point using the slope.
- Draw a straight line through the points.

Copyright © 2009 Pearson Education, Inc.

Example

- Graph 2x 3y = 9.
- Write in slope-intercept form.

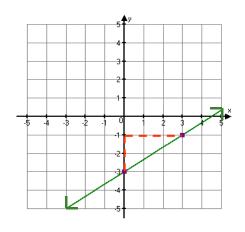
$$2x-3y = 9$$

$$-3y = -2x+9$$

$$\frac{-3y}{-3} = \frac{-2x}{-3} + \frac{9}{-3}$$

$$y = \frac{2}{3}x-3$$

The *y*-intercept is (0,-3) and the slope is 2/3.

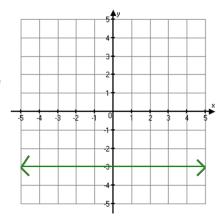


Copyright © 2009 Pearson Education, Inc.

Chapter 6 Section 7 - Slide 13

Example continued

Plot a point at (0,-3) on the y-axis, then move up 2 units and to the right 3 units.



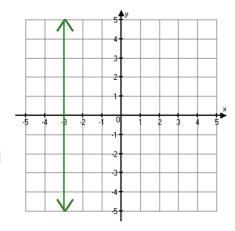
PEARSON
Addison
Wesley

Copyright © 2009 Pearson Education, Inc.

Horizontal Lines

- Graph y = -3.
- y is always equal to -3, the value of y can never be 0.
- The graph is parallel to the *x*-axis.

Copyright © 2009 Pearson Education, Inc.


Chapter 6 Section 7 - Slide 15

Vertical Lines

■ Graph x = -3.

x always equals -3, the value of x can never be 0.

The graph is parallel to the *y*-axis.

Copyright © 2009 Pearson Education, Inc.