(see back for additional constants)

Constants

Ideal gas equation of state

PV = NkT = nRT

adiabatic process:

$$PV^{\gamma} = \text{const}; P_i V_i^{\gamma} = P_f V_f^{\gamma}$$
$$TV^{\gamma-1} = \text{const}; T_i V_i^{\gamma-1} = T_f V_f^{\gamma-1}$$
$$\gamma = C_p / C_v = 5/3 \ (= 1.67) \ (\text{monatomic})$$
$$= 7/5 \ (=1.40) \ (\text{diatomic})$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3kT}{m}} \quad \left(v_{rms} = \sqrt{(v^2)_{avg}}\right)$$

Specific heat

$$Q = mc\Delta T = nc'\Delta T$$
$$dQ = mcdT = nc'dT$$

Heat capacity of ideal gasses:

monatomic: $c_V = \frac{3}{2}$ R; $c_P = (\frac{3}{2} + 1)$ R diatomic: $c_V = \frac{5}{2}$ R; $c_P = (\frac{5}{2} + 1)$ R

Thermal conductivity

$$P_{cond} = \frac{kA\Delta T}{L}$$
 or $P_{cond} = \frac{A\Delta T}{\sum_{i=1}^{n} \frac{L_i}{k_i}}$

First law of thermodynamics

$$\Delta E_{int} = Q - W_{by}$$

$$\Delta E_{int} = Q + W_{on} \text{ where } W_{on} = -W_{by}$$

equipartition theorem

$$E_{int} = \frac{3}{2} nRT = \frac{3}{2} NkT \text{ monatomic gas}$$

$$E_{int} = \frac{5}{2} nRT = \frac{5}{2} NkT \text{ diatomic gas}$$

$$\Delta E_{int} = n c'_V \Delta T$$

<u>Work</u>

$$W_{by} = + \int_{V_1}^{V_2} P dV$$

isothermal

$$W_{by} = +NkT\ln\frac{V_2}{V_1} = +nRT\ln\frac{V_2}{V_1}$$

Second law of thermodynamics

 $\Delta S_{system+surroundings} = 0$ [reversible process]

 $\Delta S_{system+surroundings} > 0$ [irreversible]

$$\frac{\text{Entropy}}{dS} = \frac{dQ}{T}$$
$$\Delta S = \int_{i}^{f} dS = \int_{i}^{f} \frac{dQ}{T}$$

Thermodynamic efficiency

 ϵ = (Work By Engine)/Q_{Hot} where Q_{Hot} is the heat put into the engine

 $\epsilon = (Q_{hot}-Q_{cold})/Q_{Hot}$ where Q_{cold} is the

absolute value of the heat out of the engine **Carnot efficiency**

$$\varepsilon_{carnot} = 1 - \frac{T_C}{T_H}$$

Substance	MP, K	L _f , kJ/kg	BP, K	L _v , kJ/kg
Alcohol, ethyl	159	109	351	879
Bromine	266	67.4	332	369
Carbon dioxide	_		194.6*	573+
Copper	1356	205	2839	4726
Gold	1336	62.8	3081	1701
Helium	—	—	4.2	21
Lead	600	24.7	2023	858
Mercury	234	11.3	630	296
Nitrogen	63	25.7	77.35	199
Oxygen	54.4	13.8	90.2	213
Silver	1234	105	2436	2323
Sulfur	388	38.5	717.75	287
Water	273.15	333.5	373.15	2257
Zinc	692	102	1184	1768

Normal Melting Point (MP), Latent Heat of Fusion (L_f), Normal Boiling Point (BP), and Latent Heat of Vaporization (L_v) for Various Substances at 1 atm

+ These values are for sublimation. Carbon dioxide does not have a liquid state at 1 atm.

Specific Heats and Molar Specific Heats of Some Solids and Liquids

Substance	c, kJ∕kg∙K	c, kcal/kg∙K or Btu/lb∙F°	c′, J∕mol∙K
Aluminum	0.900	0.215	24.3
Bismuth	0.123	0.0294	25.7
Copper	0.386	0.0923	24.5
Glass	0.840	0.20	_
Gold	0.126	0.0301	25.6
Ice (−10°C)	2.05	0.49	36.9
Lead	0.128	0.0305	26.4
Silver	0.233	0.0558	24.9
Tungsten	0.134	0.0321	24.8
Zinc	0.387	0.0925	25.2
Alcohol (ethyl)	2.4	0.58	111
Mercury	0.140	0.033	28.3
Water	4.18	1.00	75.2