\qquad

Suppose that θ is in standard position and the given point is on the terminal side of θ. Give the exact value of the indicated trig function for θ.

1) $(12,16)$; Find $\sin \theta$.
2) $(6,7)$; Find $\cot \theta$.

Find the indicated function value.
3) $\tan \theta$, given that $\cot \theta=\frac{\sqrt{11}}{6}$

Decide whether the statement is possible or impossible for an angle θ. Explain your answer!
4) $\sin \theta=1.04$
5) $\sin \theta=0.8$ and $\csc \theta=-0.8$

Find the value of the trigonometric function.
6) Find $\csc \theta$, given that $\sin \theta=-\frac{2}{3}$ and θ is in quadrant IV.
7) Find $\tan \theta$, given that $\sin \theta=\frac{3}{4}$ and θ is in quadrant II.

Without using a calculator, give the exact trigonometric function value.
8) $\tan 60^{\circ}$
9) $\csc 45^{\circ}$

Suppose ABC is a right triangle with sides of lengths a, b, and c and right angle at C. Find the unknown side length using the Pythagorean theorem and then find the value of the indicated trigonometric function of the given angle.
10) Find $\sin \mathrm{A}$ when $\mathrm{b}=36$ and $\mathrm{c}=60$
11) Find $\csc \mathrm{A}$ when $\mathrm{b}=8$ and $\mathrm{c}=17$

Find the reference angle for the given angle.
12) 239.9°

Give the exact value.
13) $\cos 150^{\circ}$
14) $\tan 120^{\circ}$

Find all values of θ, if θ is in the interval $\left[0,360^{\circ}\right.$) and has the given function value.
15) $\cos \theta=-\frac{\sqrt{3}}{2}$

Solve the right triangle.
16) $\mathrm{a}=2.7 \mathrm{~m}, \mathrm{~B}=30.7^{\circ}, \mathrm{C}=90^{\circ}$
17) $\mathrm{B}=26.6^{\circ}, \mathrm{c}=3.8 \mathrm{~mm}, \mathrm{C}=90^{\circ}$

Convert the degree measure to radians. Leave answer as a multiple of π. 18) 330°

Find the length of an arc intercepted by a central angle θ in a circle of radius r. Round your answer to 1 decimal place. 19) $\mathrm{r}=31.3 \mathrm{ft} ; \theta=\frac{\pi}{14}$ radians

Find the exact circular function value.
20) $\sin \frac{-2 \pi}{3}$

